Machine Learning powered app to decide whether a photo is food or not.

Overview

Food Not Food dot app ( 🍔 🚫 🍔 )

Code for building a machine Learning powered app to decide whether a photo is of food or not.

See it working live at: https://foodnotfood.app

Yes, that's all it does.

It's not perfect.

But think about it.

How do you decide what's food or not?

Inspiration

Remember hotdog not hotdog?

That's what this repo builds, excepts for food or not.

It's arguably harder to do food or not.

Because there's so many options for what a "food" is versus what "not food" is.

Whereas with hotdog not hotdog, you've only got one option: is it a hotdog or not?

Video and notes

I built this app during a 10-hour livestream to celebrate 100,000 YouTube Subscribers (thank you thank you thank you).

The full stream replay is available to watch on YouTube.

The code has changed since the stream.

I made it cleaner and more reproducible.

My notes are on Notion.

Steps to reproduce

Note: If this doesn't work, please leave an issue.

To reproduce, the following steps are best run in order.

You will require and installation of Conda, I'd recommend Miniconda.

Clone the repo

git clone https://github.com/mrdbourke/food-not-food
cd food-not-food

Environment creation

I use Conda for my environments. You could do similar with venv and pip but I prefer Conda.

This code works with Python 3.8.

conda create --prefix ./env python=3.8 -y
conda activate ./env
conda install pip

Installing requirements

Getting TensorFlow + GPU to work

Follow the install instructions for running TensorFlow on the GPU.

This will be required for model_building/train_model.py.

Note: Another option here to skip the installation of TensorFlow is to use your global installation of TensorFlow and just install the requirements.txt file below.

Other requirements

If you're using your global installation of TensorFlow, you might be able to just run pip install requirements.txt in your environment.

Or if you're running in another dedicated environment, you should also be able to just run pip install -r requirements.txt.

pip install -r requirements.txt

Getting the data

  1. Download Food101 data (101,000 images of food).
python data_download/download_food101.py
  1. Download a subset of Open Images data. Use the -n flag to indicate how many images from each set (train/valid/test) to randomly download.

For example, running python data_download/download_open_images.py -n=100 downloads 100 images from the training, validation and test sets of Open Images (300 images in total).

The downloading for Open Images data is powered by FiftyOne.

python data_download/download_open_images.py -n=100

Processing the data

  1. Extract the Food101 data into a "food" directory, use the -n flag to set how many images of food to extract, for example -n=10000 extracts 10,000 random food images from Food101.
python data_processing/extract_food101.py -n=10000
  1. Extract the Open Images images into open_images_extracted directory.

The data_processing/extract_open_images.py script uses the Open Images labels plus a list of foods and not foods (see data/food_list.txt and data/non_food_list.txt) to separate the downloaded Open Images.

This is necessary because some of the images from Open Images contain foods (we don't want these in our not_food class).

python data_processing/extract_open_images.py
  1. Move the extracted images into "food" and "not_food" directories.

This is necessary because our model training file will be searching for class names by the title of our directories (food and not_food).

python data_processing/move_images.py 
  1. Split the data into training and test sets.

This creates a training and test split of food and not_food images.

This is so we can verify the performance of our model before deploying it.

It'll create the structure:

train/
    food/
        image1.jpeg
        image2.jpeg
        ...
    not_food/
        image100.jpeg
        image101.jpeg
        ...
test/
    food/
        image201.jpeg
        image202.jpeg
        ...
    not_food/
        image301.jpeg
        image302.jpeg
        ...

To do this, run:

python data_processing/data_splitting.py

Modeling the data

Note: This will require a working install of TensorFlow.

Running the model training file will produce a TensorFlow Lite model (this is small enough to be deployed in a browser) saved to the models directory.

The script will look for the train and test directories and will create training and testing datasets on each respectively.

It'll print out the progress at each epoch and then evaluate and save the model.

python model_building/train_model.py

What data is used?

The current deployed model uses about 40,000 images of food and 25,000 images of not food.

Owner
Daniel Bourke
Machine Learning Engineer live on YouTube.
Daniel Bourke
oracle arm registration script.

oracle_arm oracle arm registration script. 乌龟壳刷ARM脚本 本脚本优点 简单,主机配置好oci,然后下载main.tf即可,不用自己获取各种参数。 运行环境配置 本简单脚本使用python3编写,请自行配置好python3环境和requests库。(高版

test1234455 419 Jan 01, 2023
pyreports is a python library that allows you to create complex report from various sources

pyreports pyreports is a python library that allows you to create complex reports from various sources such as databases, text files, ldap, etc. and p

Matteo Guadrini aka GU 78 Dec 13, 2022
A check numbers python module

Made with Python3 (C) @FayasNoushad Copyright permission under MIT License License - https://github.com/FayasNoushad/Numbers/blob/main/LICENSE Deplo

Fayas Noushad 3 Nov 28, 2021
Import Apex legends mprt files exported from Legion

Apex-mprt-importer-for-Blender Import Apex legends mprt files exported from Legion. REQUIRES CAST IMPORTER Usage: Use a VPK extracter to extract the m

15 Dec 18, 2022
Python Repository for Bachelor Ski Sign.

BachelorSkiSign Python Repository for Bachelor Ski Sign. This application reads data from https://bachelorapi.azurewebsites.net/ It is written in Ciru

Winston 1 Jan 04, 2022
J MBF - Assalamualaikum Mamang...

★ VISITOR ★ ★ INFORMATION ★ Script Ini DiBuat Oleh YayanXD Script Ini Akan DiPerjual Belikan Tanggal 9 Januari 2022 Jika Mau Beli Script Silahkan Hub

Risky [ Zero Tow ] 5 Apr 08, 2022
a pull switch (or BYO button) that gets you out of video calls, quick

zoomout a pull switch (or BYO button) that gets you out of video calls, quick. As seen on Twitter System compatibility Tested on macOS Catalina (10.15

Brian Moore 422 Dec 30, 2022
Shai-Hulud - A qtile configuration for the (spice) masses

Shai-Hulud - A qtile configuration for the (spice) masses Installation Notes These dotfiles are set up to use GNU stow for installation. To install, f

16 Dec 30, 2022
Turn a raspberry pi into a Bluetooth Midi device

PiBluetoothMidSetup This will change serveral system wide packages/configurations Do not run this on your primary machine or anything you don't know h

MyLab6 40 Sep 19, 2022
A simple wrapper for joy library

Joy CodeGround A simple wrapper for joy library to render joy sketches in browser using vs code, (or in other words, for those who are allergic to Jup

rijfas 9 Sep 08, 2022
SHF TEST BACKEND

➰ SHF TEST BACKEND ➿ 🐙 Goals Dada una matriz de números enteros. Obtenga el elemento máximo en la matriz que produce la suma más pequeña al agregar t

Wilmer Rodríguez S 1 Dec 19, 2021
Hands-on machine learning workshop

emb-ntua-workshop This workshop discusses introductory concepts of machine learning and data mining following a hands-on approach using popular tools

ISSEL Soft Eng Team 12 Oct 30, 2022
This Python library searches through a static directory and appends artist, title, track number, album title, duration, and genre to a .json object

This Python library searches through a static directory (needs to match your environment) and appends artist, title, track number, album title, duration, and genre to a .json object. This .json objec

Edan Ybarra 1 Jun 20, 2022
Esercizi di Python svolti per il biennio di Tecnologie Informatiche.

Esercizi di Python Un piccolo aiuto per Sofia che nel 2° quadrimestre inizierà Python :) Questo repository (termine tecnico di Git) puoi trovare tutti

Leonardo Essam Dei Rossi 2 Nov 07, 2022
Robotic hamster to give you financial advice

hampp Robotic hamster to give you financial advice. I am not liable for any advice that the hamster gives. Follow at your own peril. Description Hampp

1 Nov 17, 2021
Opensource Desktop application for kenobi.

Kenobi-Server WIP Opensource desktop application for Kenobi. Download the apple watch app to get started. What is this repo? It's repo for the opensou

Aayush 9 Oct 08, 2022
Fast STL (ASCII & Binary) importer for Blender

blender-fast-stl-importer Fast STL (ASCII & Binary) importer for Blender based on https://en.wikipedia.org/wiki/STL_(file_format) Technical notes: flo

Iyad Ahmed 7 Apr 17, 2022
Python wrapper around Apple App Store Api

App Store Connect Api This is a Python wrapper around the Apple App Store Api : https://developer.apple.com/documentation/appstoreconnectapi So far, i

123 Jan 06, 2023
A collection of software that serve no purpose other than waste your time. Forking is encouraged!

the-useless-collection A collection of software that serve no purpose other than waste your time. Forking is encouraged! Requires Python 3.9. Usage Go

Imsad2 1 Mar 16, 2022
From "fixed RAnDom CRashes" to "[FIX] Fixed random crashes."

Clean Commit From fixed RAnDom CRashes to [FIX] Fixed random crashes. Clean commit helps you by auto-formating your commits to make your repos better

Mathias 3 Dec 26, 2021