Learning to compose soft prompts for compositional zero-shot learning.

Overview

Compositional Soft Prompting (CSP)

Compositional soft prompting (CSP), a parameter-efficient learning technique to improve the zero-shot compositionality of large-scale pretrained vision-language models (VLMs) without the overhead of fine-tuning the entire model.

Reference Paper: Learning to Compose Soft Prompts for Compositional Zero-Shot Learning

alt text

If you find CSP helpful, please cite our paper:

@article{csp2022,
  author = {Nayak, Nihal V. and Yu, Peilin and Bach, Stephen H.},
  title = {Learning to Compose Soft Prompts for Compositional Zero-Shot Learning},
  volume = {arXiv:2204.03574 [cs.LG]},
  year = {2022},
}

Setup

conda create --name clip python=3.7
conda activate clip
pip3 install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu113
pip3 install ftfy regex tqdm scipy pandas
pip3 install git+https://github.com/openai/CLIP.git

Alternatively, you can use pip install -r requirements.txt to install all the dependencies.

Download Dataset

We experiment with three datasets: MIT-States, UT-Zappos, and C-GQA.

sh download_data.sh

If you already have setup the datasets, you can use symlink and ensure the following paths exist: data/<dataset> where <datasets> = {'mit-states', 'ut-zappos', 'cgqa'}.

Training

python -u train.py \
  --dataset mit-states \
  --model ViT-L/14 \
  --experiment_name csp \
  --seed 0 \
  --epochs 20 \
  --lr 5e-05 \
  --attr_dropout 0.3 \
  --weight_decay 0.00001 \
  --train_batch_size 64 \
  --gradient_accumulation_steps 2 \
  --context_length 8 \
  --save_path data/model/mit-states/sample_model \
  --save_every_n 1

You can replace --dataset with {mit-states, ut-zappos, cgqa}. The best hyperparameters are included in the paper.

Evaluation

We evaluate our models in two settings: closed-world and open-world.

Closed-World Evaluation

python -u evaluate.py \
  --dataset mit-states \
  --soft_embeddings data/model/mit-states/sample_model/soft_embeddings_epoch_20.pt \
  --context_length 16 \
  --text_encoder_batch_size 36 \
  --eval_batch_size 16 \
  --experiment_name csp

Open-World Evaluation

For our open-world evaluation, we compute the feasbility calibration and then evaluate on the dataset.

Feasibility Calibration

We use GloVe embeddings to compute the similarities between objects and attributes. Download the GloVe embeddings in the data directory:

cd data
wget https://nlp.stanford.edu/data/glove.6B.zip

Move glove.6B.300d.txt into data/glove.6B.300d.txt.

To compute feasibility calibration for each dataset, run the following command:

python -u datasets/feasibility.py --dataset mit-states

The feasibility similarities are saved at data/feasibility_<dataset>.pt.

Evaluation

The open-world evaluation with the thresholds (feasibility calibration).

python -u evaluate.py \
  --dataset mit-states \
  --soft_embeddings data/model/mit-states/sample_model/soft_embeddings_epoch_5.pt \
  --context_length 16 \
  --text_encoder_batch_size 36 \
  --eval_batch_size 256 \
  --experiment_name czsl \
  --threshold <threshold> \
  --open_world

If <threshold> is None, then the model picks the best threshold on the validation set. We use the following thresholds:

Dataset Threshold
mit-states 0.4069159426
ut-zappos 0.5299109123
cgqa 0.49937106273612186

Note: We use 256GB of cpu memory to evaluate cgqa.

Generalization to Higher-Order Compositions

Evaluate the trained CSP vocabulary on the new AAO-MIT-States dataset.

python aao/evaluate_att_att_obj.py \
  --experiment_name csp \
  --soft_embeddings data/model/mit-states/sample_model/soft_embeddings_epoch_20.pt

We thank Andrew Delworth and Elise Carman for helping us annotate this dataset.

Generalization to Mixed Pretrained and Fine-Tuned Vocabulary

Ablation experiment to train and evaluate CSP with reduced fine-tuned vocabulary. We run experiment on the ut-zappos dataset.

Training

python -u mix/mix_train.py \
  --dataset ut-zappos \
  --model ViT-L/14 \
  --experiment_name mix_csp \
  --seed 0 \
  --epochs 20 \
  --lr 5e-04 \
  --attr_dropout 0.2 \
  --weight_decay 0.00001 \
  --train_batch_size 64 \
  --context_length 8 \
  --save_path data/model/ut-zappos/mix_train_model_0.25 \
  --save_every_n 5 \
  --attr_keep_ratio 0.25 \
  --gradient_accumulation_steps 2

We change the --attr_keep_ratio to {0.25, 0.50, 0.75}.

Evaluation

python -u mix/evaluate_mix_train.py \
  --dataset ut-zappos \
  --soft_embeddings data/model/ut-zappos/mix_train_model_0.25/soft_embeddings.pt \
  --context_length 16 \
  --text_encoder_batch_size 36 \
  --eval_batch_size 256 \
  --experiment_name csp

Credits

The project uses openly available model, code, and datasets. Please see the credits.

Owner
Bats Research
Bats Research
A TCP Backdoor made in python

Tracey-Backdoor A Reverse Shell Backdoor made in python OOP. It supposed to work in Windows and Linux OS Functions: Reverse Connection Send Reverse TC

13 Oct 15, 2022
Log4Shell RCE Exploit - fully independent exploit does not require any 3rd party binaries.

Log4Shell RCE Exploit fully independent exploit does not require any 3rd party binaries. The exploit spraying the payload to all possible logged HTTP

258 Jan 02, 2023
Spring Cloud Gateway < 3.0.7 & < 3.1.1 Code Injection (RCE)

Spring Cloud Gateway 3.0.7 & 3.1.1 Code Injection (RCE) CVE: CVE-2022-22947 CVSS: 10.0 (Vmware - https://tanzu.vmware.com/security/cve-2022-22947)

Carlos Vieira 35 Dec 28, 2022
Flutter Reverse Engineering Framework

This framework helps reverse engineer Flutter apps using patched version of Flutter library which is already compiled and ready for app repacking. There are changes made to snapshot deserialization p

PT SWARM 910 Jan 01, 2023
Python script that sends CVE-2021-44228 log4j payload requests to url list

scan4log4j Python script that sends CVE-2021-44228 log4j payload requests to url list [VERY BETA] using Supply your url list to urls.txt Put your payl

elyesa 5 Nov 09, 2022
Subdomain enumeration,Web scraping and finding usernames automation script written in python

Subdomain enumeration,Web scraping and finding usernames automation script written in python

Syam 12 Nov 22, 2022
一款辅助探测Orderby注入漏洞的BurpSuite插件,Python3编写,适用于上xray等扫描器被ban的场景

OrderbyHunter 一款辅助探测Orderby注入漏洞的BurpSuite插件,Python3编写,适用于上xray等扫描器被ban的场景 1. 支持Get/Post型请求参数的探测,被动探测,对于存在Orderby注入的请求将会在HTTP Histroy里标红 2. 自定义排序参数list

Automne 21 Aug 12, 2022
TCP/UDP port scanner on python, usong scapy and multiprocessin

Port Scanner TCP/UDP port scanner on python, usong scapy and multiprocessing. Usage python3 scanner.py [OPTIONS] IP_ADDRESS [{tcp|udp}[/[PORT|PORT-POR

Egor Krokhin 1 Dec 05, 2021
Facebook Fast Cracking Tool With Python

Pro-Crack Facebook Fast Cracking Tool This is a multi-password‌ cracking tool that can help you hack facebook accounts very quickly Installation On Te

ReD H4CkeR 5 Feb 19, 2022
edgedressing leverages a Windows "feature" in order to force a target's Edge browser to open. This browser is then directed to a URL of choice.

edgedressing One day while experimenting with airpwn-ng, I noticed unexpected GET requests on the target node. The node in question happened to be a W

stryngs 43 Dec 23, 2022
Kunyu, more efficient corporate asset collection

Kunyu(坤舆) - More efficient corporate asset collection English | 中文文档 0x00 Introduce Tool introduction Kunyu (kunyu), whose name is taken from , is act

Knownsec, Inc. 772 Jan 05, 2023
S2-061 的payload,以及对应简单的PoC/Exp

S2-061 脚本皆根据vulhub的struts2-059/061漏洞测试环境来写的,不具普遍性,还望大佬多多指教 struts2-061-poc.py(可执行简单系统命令) 用法:python struts2-061-poc.py http://ip:port command 例子:python

dreamer 46 Oct 20, 2022
RedTeam-Security - In this repo you will get the information of Red Team Security related links

OSINT Passive Discovery Amass - https://github.com/OWASP/Amass (Attack Surface M

Abhinav Pathak 5 May 18, 2022
Wireguard VPN Server Installer for: on Ubuntu, Debian, Arch, Fedora and CentOS

XGuard (Wireguard Server Installer) This Python script should make the installation of a Wireguard VPN server as easy as possible. Wireguard is a mode

Johann 3 Nov 04, 2022
Cookiecutter for creating open source Python packages

Cookiecutter for rapidly developing new open source Python packages. Best practices with all the modern bells and whistles included.

Wolt 177 Dec 22, 2022
A kAFL based hypervisor fuzzer which fully supports nested VMs

hAFL2 hAFL2 is a kAFL-based hypervisor fuzzer. It is the first open-source fuzzer which is able to target hypervisors natively (including Hyper-V), as

SafeBreach Labs 115 Dec 07, 2022
Find exposed API keys based on RegEx and get exploitation methods for some of keys that are found

dora Features Blazing fast as we are using ripgrep in backend Exploit/PoC steps for many of the API key, allowing to write a good report for bug bount

Siddharth Dushantha 243 Dec 27, 2022
AttractionFinder - 2022 State Qualified FBLA Attraction Finder Application

Attraction Finder Developers: Riyon Praveen, Aaron Bijoy, & Yash Vora How It Wor

$ky 2 Feb 09, 2022
Fast Fb Cracking Tool

fb-brute Fast Fb Cracking Tool 🏆

Aryan 8 Jun 29, 2022
Agile Threat Modeling Toolkit

Threagile is an open-source toolkit for agile threat modeling:

Threagile 425 Jan 07, 2023