L3DAS22 challenge supporting API

Overview

L3DAS22 challenge supporting API

This repository supports the L3DAS22 IEEE ICASSP Grand Challenge and it is aimed at downloading the dataset, pre-processing the sound files and the metadata, training and evaluating the baseline models and validating the final results. We provide easy-to-use instruction to produce the results included in our paper. Moreover, we extensively commented our code for easy customization.

For further information please refer to the challenge website and to the challenge documentation.

Installation

Our code is based on Python 3.7.

To install all required dependencies run:

pip install -r requirements.txt

Follow these instructions to properly create and place the kaggle.json file.

Dataset download

It is possible to download the entire dataset through the script download_dataset.py. This script downloads the data, extracts the archives, merges the 2 parts of task1 train360 files and prepares all folders for the preprocessing stage.

To download run this command:

python download_dataset.py --output_path ./DATASETS --unzip True

This script may take long, especially the unzipping stage.

Alternatively, it is possible to manually download the dataset from Kaggle.

The train360 section of task 1 is split in 2 downloadable files. If you manually download the dataset, you should manually merge the content of the 2 folders. You can use the function download_dataset.merge_train360(). Example:

import download_dataset

train360_path = "path_that_contains_both_train360_parts"
download_dataset.merge_train360(train360_path)

Pre-processing

The file preprocessing.py provides automated routines that load the raw audio waveforms and their correspondent metadata, apply custom pre-processing functions and save numpy arrays (.pkl files) containing the separate predictors and target matrices.

Run these commands to obtain the matrices needed for our baseline models:

python preprocessing.py --task 1 --input_path DATASETS/Task1 --training_set train100 --num_mics 1
python preprocessing.py --task 2 --input_path DATASETS/Task2 --num_mics 1 --frame_len 100

The two tasks of the challenge require different pre-processing.

For Task1 the function returns 2 numpy arrays contatining:

  • Input multichannel audio waveforms (3d noise+speech scenarios) - Shape: [n_data, n_channels, n_samples].
  • Output monoaural audio waveforms (clean speech) - Shape [n_data, 1, n_samples].

For Task2 the function returns 2 numpy arrays contatining:

  • Input multichannel audio spectra (3d acoustic scenarios): Shape: [n_data, n_channels, n_fft_bins, n_time_frames].
  • Output seld matrices containing the class ids of all sounds present in each 100-milliseconds frame alongside with their location coordinates - Shape: [n_data, n_frames, ((n_classes * n_class_overlaps) + (n_classes * n_class_overlaps * n_coordinates))], where n_class_overlaps is the maximum amount of possible simultaneous sounds of the same class (3) and n_coordinates refers to the spatial dimensions (3).

Baseline models

We provide baseline models for both tasks, implemented in PyTorch. For task 1 we use a Beamforming U-Net and for task 2 an augmented variant of the SELDNet architecture. Both models are based on the single-microphone dataset configuration. Moreover, for task 1 we used only Train100 as training set.

To train our baseline models with the default parameters run:

python train_baseline_task1.py
python train_baseline_task2.py

These models will produce the baseline results mentioned in the paper.

GPU is strongly recommended to avoid very long training times.

Alternatively, it is possible to download our pre-trained models with these commands:

python download_baseline_models.py --task 1 --output_path RESULTS/Task1/pretrained
python download_baseline_models.py --task 2 --output_path RESULTS/Task2/pretrained

These models are also available for manual download here.

We also provide a Replicate interactive demo of both baseline models.

Evaluaton metrics

Our evaluation metrics for both tasks are included in the metrics.py script. The functions task1_metric and location_sensitive_detection compute the evaluation metrics for task 1 and task 2, respectively. The default arguments reflect the challenge requirements. Please refer to the above-linked challenge paper for additional information about the metrics and how to format the prediction and target vectors.

Example:

import metrics

task1_metric = metrics.task1_metric(prediction_vector, target_vector)
_,_,_,task2_metric = metrics.location_sensitive_detection(prediction_vector, target_vector)

To compute the challenge metrics for our basiline models run:

python evaluate_baseline_task1.py
python evaluate_baseline_task2.py

In case you want to evaluate our pre-trained models, please add --model_path path/to/model to the above commands.

Submission shape validation

The script validate_submission.py can be used to assess the validity of the submission files shape. Instructions about how to format the submission can be found in the L3das website Use these commands to validate your submissions:

python validate_submission.py --task 1 --submission_path path/to/task1_submission_folder --test_path path/to/task1_test_dataset_folder

python validate_submission.py --task 2 --submission_path path/to/task2_submission_folder --test_path path/to/task2_test_dataset_folder

For each task, this script asserts if:

  • The number of submitted files is correct
  • The naming of the submitted files is correct
  • Only the files to be submitted are present in the folder
  • The shape of each submission file is as expected

Once you have valid submission folders, please follow the instructions on the link above to proceed with the submission.

Owner
L3DAS
The L3DAS project aims at providing new 3D audio datasets and encouraging the proliferation of new deep learning methods for 3D audio analysis.
L3DAS
Repositorio que contiene el material mostrado en la primera PyCON de Chile

Buenas prácticas de desarrollo en Python Repositorio que contiene el material mostrado en la primera PyCON de Chile, realizada del 5 al 7 de Noviembre

Erick Castillo 5 Feb 01, 2022
A Twitch bot to provide information from the WebNowPlayingCompanion extension

WebNowPlayingTwitch A Twitch bot made using TwitchIO which displays information obtained from the WebNowPlaying Compaion browser extension. Image is o

NiceAesth 1 Mar 21, 2022
Send embeds using your discord personal account

Welcome to Embed Sender 👋 Send embeds using your discord personal account Install pip install -r requirements.txt Usage Put your discord token in ./

SkydenFly 11 Sep 07, 2022
ML-Test-Client

ML-Test-Client Introduction What is this? This Test Client App is to be used to crowd-test machine learning models with the goal of finding the best c

11 Jul 15, 2022
YouTube bot, this is just my introduction to api and requests, this isn't intended on being an actual view bot.

YouTube bot, this is just my introduction to api and requests, this isn't intended on being an actual view bot.

Aran 2 Jul 25, 2022
Deploy a STAC API and a dynamic mosaic tiler API using AWS CDK.

Earth Observation API Deploy a STAC API and a dynamic mosaic tiler API using AWS CDK.

Development Seed 39 Oct 30, 2022
Convenient script for trading with python.

Convenient script for trading with python.

VladKochetov007 66 Dec 07, 2022
短信发送 Python 程序(包含1000+有效接口)

短信轰炸 Python 程序(包含1000+有效接口) 前言 这是一个爬取网络上在线轰炸的接口,后通过 Python 异步 请求接口以达到 手机短信轰炸 的目的。 此为开源项目,仅供娱乐学习使用,使用者所带来的一切后果与作者无关,使用请遵守相关的法律法规,合理使用,请勿滥用。 食用方法 1. 爬取接

蓝鲸落 10.2k Jan 02, 2023
A Twitter bot written in Python using Tweepy and hosted on a server.

A Twitter bot written in Python using Tweepy. It can like and/or retweet tweets that contain single or multiple keywords and hashtags.

anniedotexe 11 Dec 15, 2022
TwitterBot-ImageCollector - Twitter bot that collects images from likes saves the image

TwitterBot-ImageCollector Bot de Twitter que recolecta imagenes a partir de los

Gx3 Studios 4 Jun 01, 2022
CryptoBar - A simple MenuBar app that shows the price of 3 cryptocurrencies

CryptoBar A very simple MenuBar app that shows the price of the following crypto

4 Jul 04, 2022
Acc-discord-rpc - Assetto Corsa Competizione Discord Rich Presence Client

A simple Assetto Corsa Competizione Rich Presence client. This app only works in

6 Dec 18, 2022
A webhook API for Discord.

Webhook API A webhook API for Discord. Requirements requests Usage

1 Feb 08, 2022
REPO USERBOT YANG DIBUAT DARI BERBAGAI REPO USERBOT GITHUB.

Lord Userbot Userbot Yang Digunakan Untuk Bersenang-Senang Di Telegram Repo Lord Userbot Repo Yang Dibuat Alvin Dari Berbagai Repo Userbot Github CARA

Alvin 70 Jan 02, 2023
A telegram bot which can show you the status of telegram bot

BotStatus-Ts-Bot An open source telegram Bot Status bot For demo you can check here The status is updated in every 1 hour About Bot This is a Bot stat

Ts_Bots 8 Nov 17, 2022
A python tool to Automate Whatsapp through Whatsapp web

This python tool is used to Automate Whatsapp through Whatsapp web. We can add number of contacts whom we want to send text messages on perticular time

5 Jul 21, 2022
Bot to notify when vaccine appointments are available

Vaccine Watch Bot to notify when vaccine appointments are available. Supports checking Hy-Vee, Walgreens, CVS, Walmart, Cosentino's stores (KC), and B

Peter Carnesciali 37 Aug 13, 2022
Extrait les informations contenues dans le code QR de la preuve de vaccination générée par le gouvernement du Québec

DecodeurPreuveVaccinationQC Extrait les informations contenues dans le code QR de la preuve de vaccination générée par le gouvernement du Québec Utili

Guillaume Morissette 8 Jul 26, 2022
Clubhouse API written in Python. Standalone client included. For reference and education purposes only.

clubhouse-py is originally developed for the sake of interoperability. Standalone client is also created with very basic features, including but not limited to the audio-chat

1.7k Jan 05, 2023
OAN Music - Highly advanced User Music Bot

ཧᜰ꙰ꦿ➢𝐎𝐀𝐍༒☛ 🎧 Advanced 𝐎𝐀𝐍 Music bot. 🔗 𝐏𝐨𝐰𝐞𝐫𝐞𝐝 𝐛𝐲 : ➢𝐀ttitude

Attitude king 5 Feb 25, 2022