Improving Representations via Similarities

Related tags

Miscellaneousembetter
Overview

embetter

warning

I like to build in public, but please don't expect anything yet. This is alpha stuff!

notes

Improving Representations via Similarities

The object to implement:

Embetter(multi_output=True, epochs=50, sampling_kwargs)
  .fit(X, y)
  .fit_sim(X1, X2, y_sim, weights)
  .partial_fit(X, y, classes, weights)
  .partial_fit_sim(X1, X2, y_sim, weights)
  .predict(X)
  .predict_proba(X)
  .predict_sim(X1, X2)
  .transform(X)
  .translate_X_y(X, y, classes=none)

Observation: especially when multi_output=True there's an opportunity with regards to NaN y-values. We can simply choose with values to translate and which to ignore.

Comments
  • [WIP] Feature/progress bar

    [WIP] Feature/progress bar

    Fixes issue #20

    • [x] Adds progress bar to all text and image embedders.
    • [x] Tests for SentenceEncoder.
    • [ ] Use perfplot for progress bar?
    • [ ] Can we ensure fast NumPy vectorization while using a progress bar?
    opened by CarloLepelaars 5
  • [BUG] `device` should be attribute on `SentenceEncoder`

    [BUG] `device` should be attribute on `SentenceEncoder`

    The device argument in SentenceEncoder is not defined as an attribute. This leads to bugs when using it with sklearn. I encountered attribute errors when trying to print out a Pipeline representation that has SentenceEncoder as a component.

    Should be easy to fix by just adding self.device in SentenceEncoder.__init__. We can consider adding tests for text encoders so we can catch these errors beforehand.

    The scikit-learn development docs make it clear every argument should be defined as an attribute:

    every keyword argument accepted by init should correspond to an attribute on the instance. Scikit-learn relies on this to find the relevant attributes to set on an estimator when doing model selection.

    Error message: AttributeError: 'SentenceEncoder' object has no attribute 'device'.

    Reproduction: Python 3.8 with embetter = "^0.2.2"

    se = SentenceEncoder()
    repr(se)
    

    Fix:

    Add self.device on SentenceEncoder

    class SentenceEncoder(EmbetterBase):
        .
        .
        def __init__(self, name="all-MiniLM-L6-v2", device=None):
            if not device:
                device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
            self.device = device
            self.name = name
            self.tfm = SBERT(name, device=self.device)
    
    opened by CarloLepelaars 4
  • Color Histograms - Additional Tricks

    Color Histograms - Additional Tricks

    This approach could work pretty well as an implementation: https://danielmuellerkomorowska.com/2020/06/17/analyzing-image-histograms-with-scikit-image/

    To do something similar to what is explained here: https://www.pinecone.io/learn/color-histograms/

    opened by koaning 4
  • Support for word embeddings

    Support for word embeddings

    Hi,

    Do you think it would be a good idea to add support for static word embeddings (word2vec, glove, etc.)? The embedder would need:

    • A filename to a local embedding file (e.g., glove.6b.100d.txt)
    • Either a callable tokenizer or regex string (i.e., the way sci-kit learn's TfIdfVectorizer splits words).
    • A (name of a) pooling function (e.g., "mean", "max", "sum").

    The second and third parameters could easily have sensible defaults, of course. If you think it's a good idea, I can do the PR somewhere next week.

    Stéphan

    opened by stephantul 3
  • [FEATURE] SpaCyEmbedder

    [FEATURE] SpaCyEmbedder

    I think it would be a nice addition to add an embedder that can easily vectorize text through SpaCy. I already have an implementation class for this and would be happy to contribute it here.

    SpaCy Docs on vector: https://spacy.io/api/doc#vector

    Example code for single string:

    import spacy
    nlp = spacy.load("en_core_web_sm")
    doc = nlp("This here text")
    doc.vector
    
    opened by CarloLepelaars 2
  • `get_feature_names_out` for encoders

    `get_feature_names_out` for encoders

    I would be happy to implement get_feature_names_out for all the Embetter objects. I will implement them by just adding a new method (without a Mixin).

    opened by CarloLepelaars 1
  • Remove the classification layer in timm models

    Remove the classification layer in timm models

    I was playing a bit with the library and found out that the TimmEncoder returns 1000-dimensional vectors for all the models I selected. That is caused by returning the state of the last FC classification layer and the fact all of the models were trained on ImageNet with 1000 classes. In practice, it's typically replaced with identity.

    Are there any reasons for returning the state of that last layer as an embedding? I'd be happy to submit a PR fixing that.

    opened by kacperlukawski 1
  • xception mobilenet

    xception mobilenet

    https://keras.io/api/applications/

    https://www.tensorflow.org/api_docs/python/tf/keras/applications/mobilenet_v2/MobileNetV2 https://www.tensorflow.org/api_docs/python/tf/keras/applications/xception/Xception

    opened by koaning 0
  • 'SentenceEncoder' object has no attribute 'device'

    'SentenceEncoder' object has no attribute 'device'

    text_emb_pipeline = make_pipeline(
      ColumnGrabber("text"),
      SentenceEncoder('all-MiniLM-L6-v2')
    )
    
    # This pipeline can also be trained to make predictions, using
    # the embedded features. 
    text_clf_pipeline = make_pipeline(
      text_emb_pipeline,
      LogisticRegression()
    )
    
    dataf = pd.DataFrame({
      "text": ["positive sentiment", "super negative"],
      "label_col": ["pos", "neg"]
    })
    
    X = text_emb_pipeline.fit_transform(dataf, dataf['label_col'])
    text_clf_pipeline.fit(dataf, dataf['label_col'])
    

    This code gives this error: 'SentenceEncoder' object has no attribute 'device'

    opened by nicholas-dinicola 6
Releases(0.2.2)
Owner
vincent d warmerdam
Solving problems involving data. Mostly NLP these days. AskMeAnything[tm].
vincent d warmerdam
Python interface to ISLEX, an English IPA pronunciation dictionary with syllable and stress marking.

pysle Questions? Comments? Feedback? Pronounced like 'p' + 'isle'. An interface to a pronunciation dictionary with stress markings (ISLEX - the intern

Tim 38 Dec 14, 2022
Shopping-card - Shopping Card Project With Python

Shopping Card Project this application was built to handle problems with saving

moein98 1 May 06, 2022
COVID-19 case tracker in Dash

covid_dashy_personal This is a personal project to build a simple COVID-19 tracker for Australia with Dash. Key functions of this dashy will be to Dis

Jansen Zhang 1 Nov 30, 2021
Assembly example for CadQuery

Spindle and vacuum attachment This is a model of the vacuum attachment for my Workbee CNC router. There is a mist spray coming from the left hand side

Marcus Boyd 20 Sep 16, 2022
Bible-App : Simple Tool To Show Bible Books

Bible App Simple Tool To Show Bible Books Socials: Language:

ميخائيل 5 Jan 18, 2022
This repository contains completed Python projects

My Python projects This repository contains completed Python projects: 1) Build projects Guide for building projects into executable files 2) Calculat

Igor Yunusov 8 Nov 04, 2021
Antchain-MPC is a library of MPC (Multi-Parties Computation)

Antchain-MPC Antchain-MPC is a library of MPC (Multi-Parties Computation). It include Morse-STF: A tool for machine learning using MPC. Others: Commin

Alipay 37 Nov 22, 2022
Chemical equation balancer

Chemical equation balancer Balance your chemical equations with ease! Installation $ git clone

Marijan Smetko 4 Nov 26, 2022
The only purpose of a byte-sized application is to help you create .desktop entry files for downloaded applications.

Turtle 🐢 The only purpose of a byte-sized application is to help you create .desktop entry files for downloaded applications. As of usual with elemen

TenderOwl 14 Dec 29, 2022
A dog facts python module

A dog facts python module

Fayas Noushad 3 Nov 28, 2021
Usando Multi Player Perceptron e Regressão Logistica para classificação de SPAM

Relatório dos procedimentos executados e resultados obtidos. Objetivos Treinar um modelo para classificação de SPAM usando o dataset train_data. Class

André Mediote 1 Feb 02, 2022
A framework that let's you compose websites in Python with ease!

Perry Perry = A framework that let's you compose websites in Python with ease! Perry works similar to Qt and Flutter, allowing you to create componen

Linkus 13 Oct 09, 2022
contextlib2 is a backport of the standard library's contextlib module to earlier Python versions.

contextlib2 is a backport of the standard library's contextlib module to earlier Python versions. It also sometimes serves as a real world proving gro

Jazzband 35 Dec 23, 2022
Tenda D151 & D301 - Unauthenticated configuration download

Exploit Title: Tenda D151 & D301 - Unauthenticated configuration download (login included)

Ayoub 3 Jul 14, 2022
Companion Web site for Fluent Python, Second Edition

Fluent Python, the site Source code and content for fluentpython.com. The site complements Fluent Python, Second Edition with extra content that did n

Fluent Python 49 Dec 08, 2022
FindUncommonShares.py is a Python equivalent of PowerView's Invoke-ShareFinder.ps1 allowing to quickly find uncommon shares in vast Windows Domains.

FindUncommonShares The script FindUncommonShares.py is a Python equivalent of PowerView's Invoke-ShareFinder.ps1 allowing to quickly find uncommon sha

Podalirius 184 Jan 03, 2023
This is the code of Python enthusiasts collection and written.

I am Python's enthusiast, like to collect Python's programs and code.

cnzb 35 Apr 18, 2022
fast_bss_eval is a fast implementation of the bss_eval metrics for the evaluation of blind source separation.

fast_bss_eval Do you have a zillion BSS audio files to process and it is taking days ? Is your simulation never ending ? Fear no more! fast_bss_eval i

Robin Scheibler 99 Dec 13, 2022
automate some stuff so I can be more noob

dota automate some stuff so I can be more noob This is a simple project, but one that I've wanted forever! I use pyautogui, time, smtplib and datetime

Aaron Allen 17 Oct 18, 2022
Простенький ботик для троллинга с интерфейсом #Yakima_Visus

Bot-Trolling-Vk Простенький ботик для троллинга с интерфейсом #Yakima_Visus Установка pip install vk_api pip install requests если там еще чото будет

Yakima Visus 4 Oct 11, 2022