Mixer -- Is a fixtures replacement. Supported Django, Flask, SqlAlchemy and custom python objects.

Overview

https://raw.github.com/klen/mixer/develop/docs/_static/logo.png

The Mixer is a helper to generate instances of Django or SQLAlchemy models. It's useful for testing and fixture replacement. Fast and convenient test-data generation.

Mixer supports:

Tests Status Version Downloads License

Docs are available at https://mixer.readthedocs.org/. Pull requests with documentation enhancements and/or fixes are awesome and most welcome.

Описание на русском языке: http://klen.github.io/mixer.html

Important

From version 6.2 the Mixer library doesn't support Python 2. The latest version with python<3 support is mixer 6.1.3

Requirements

  • Python 3.7+
  • Django (3.0, 3.1) for Django ORM support;
  • Flask-SQLALchemy for SQLAlchemy ORM support and integration as Flask application;
  • Faker >= 0.7.3
  • Mongoengine for Mongoengine ODM support;
  • SQLAlchemy for SQLAlchemy ORM support;
  • Peewee ORM support;

Installation

Mixer should be installed using pip:

pip install mixer

Usage

By default Mixer tries to generate fake (human-friendly) data.
If you want to randomize the generated values initialize the Mixer
by manual: Mixer(fake=False)
By default Mixer saves the generated objects in a database. If you want to disable
this, initialize the Mixer by manual like Mixer(commit=False)

Django workflow

Quick example:

from mixer.backend.django import mixer
from customapp.models import User, UserMessage

# Generate a random user
user = mixer.blend(User)

# Generate an UserMessage
message = mixer.blend(UserMessage, user=user)

# Generate an UserMessage and an User. Set username for generated user to 'testname'.
message = mixer.blend(UserMessage, user__username='testname')

# Generate SomeModel from SomeApp and select FK or M2M values from db
some = mixer.blend('someapp.somemodel', somerelation=mixer.SELECT)

# Generate SomeModel from SomeApp and force a value of money field from default to random
some = mixer.blend('someapp.somemodel', money=mixer.RANDOM)

# Generate 5 SomeModel's instances and take company field's values from custom generator
some_models = mixer.cycle(5).blend('somemodel', company=(name for name in company_names))

Flask, Flask-SQLAlchemy

Quick example:

from mixer.backend.flask import mixer
from models import User, UserMessage

mixer.init_app(self.app)

# Generate a random user
user = mixer.blend(User)

# Generate an userMessage
message = mixer.blend(UserMessage, user=user)

# Generate an UserMessage and an User. Set username for generated user to 'testname'.
message = mixer.blend(UserMessage, user__username='testname')

# Generate SomeModel and select FK or M2M values from db
some = mixer.blend('project.models.SomeModel', somerelation=mixer.SELECT)

# Generate SomeModel from SomeApp and force a value of money field from default to random
some = mixer.blend('project.models.SomeModel', money=mixer.RANDOM)

# Generate 5 SomeModel's instances and take company field's values from custom generator
some_models = mixer.cycle(5).blend('project.models.SomeModel', company=(company for company in companies))

Support for Flask-SQLAlchemy models that have __init__ arguments

For support this scheme, just create your own mixer class, like this:

from mixer.backend.sqlalchemy import Mixer

class MyOwnMixer(Mixer):

    def populate_target(self, values):
        target = self.__scheme(**values)
        return target

mixer = MyOwnMixer()

SQLAlchemy workflow

Example of initialization:

from mixer.backend.sqlalchemy import Mixer

ENGINE = create_engine('sqlite:///:memory:')
BASE = declarative_base()
SESSION = sessionmaker(bind=ENGINE)

mixer = Mixer(session=SESSION(), commit=True)
role = mixer.blend('package.models.Role')

Also, see Flask, Flask-SQLAlchemy.

Mongoengine workflow

Example usage:

from mixer.backend.mongoengine import mixer

class User(Document):
    created_at = DateTimeField(default=datetime.datetime.now)
    email = EmailField(required=True)
    first_name = StringField(max_length=50)
    last_name = StringField(max_length=50)
    username = StringField(max_length=50)

class Post(Document):
    title = StringField(max_length=120, required=True)
    author = ReferenceField(User)
    tags = ListField(StringField(max_length=30))

post = mixer.blend(Post, author__username='foo')

Marshmallow workflow

Example usage:

from mixer.backend.marshmallow import mixer
import marshmallow as ma

class User(ma.Schema):
    created_at = ma.fields.DateTime(required=True)
    email = ma.fields.Email(required=True)
    first_name = ma.fields.String(required=True)
    last_name = ma.fields.String(required=True)
    username = ma.fields.String(required=True)

class Post(ma.Schema):
    title = ma.fields.String(required=True)
    author = ma.fields.Nested(User, required=True)

post = mixer.blend(Post, author__username='foo')

Common usage

Quick example:

from mixer.main import mixer

class Test:
    one = int
    two = int
    name = str

class Scheme:
    name = str
    money = int
    male = bool
    prop = Test

scheme = mixer.blend(Scheme, prop__one=1)

DB commits

By default 'django', 'flask', 'mongoengine' backends tries to save objects in database. For preventing this behavior init mixer manually:

from mixer.backend.django import Mixer

mixer = Mixer(commit=False)

Or you can temporary switch context use the mixer as context manager:

from mixer.backend.django import mixer

# Will be save to db
user1 = mixer.blend('auth.user')

# Will not be save to db
with mixer.ctx(commit=False):
    user2 = mixer.blend('auth.user')

Custom fields

The mixer allows you to define generators for fields by manually. Quick example:

from mixer.main import mixer

class Test:
    id = int
    name = str

mixer.register(Test,
    name=lambda: 'John',
    id=lambda: str(mixer.faker.small_positive_integer())
)

test = mixer.blend(Test)
test.name == 'John'
isinstance(test.id, str)

# You could pinned just a value to field
mixer.register(Test, name='Just John')
test = mixer.blend(Test)
test.name == 'Just John'

Also, you can make your own factory for field types:

from mixer.backend.django import Mixer, GenFactory

def get_func(*args, **kwargs):
    return "Always same"

class MyFactory(GenFactory):
    generators = {
        models.CharField: get_func
    }

mixer = Mixer(factory=MyFactory)

Middlewares

You can add middleware layers to process generation:

from mixer.backend.django import mixer

# Register middleware to model
@mixer.middleware('auth.user')
def encrypt_password(user):
    user.set_password('test')
    return user

You can add several middlewares. Each middleware should get one argument (generated value) and return them.

It's also possible to unregister a middleware:

mixer.unregister_middleware(encrypt_password)

Locales

By default mixer uses 'en' locale. You could switch mixer default locale by creating your own mixer:

from mixer.backend.django import Mixer

mixer = Mixer(locale='it')
mixer.faker.name()          ## u'Acchisio Conte'

At any time you could switch mixer current locale:

mixer.faker.locale = 'cz'
mixer.faker.name()          ## u'Miloslava Urbanov\xe1 CSc.'

mixer.faker.locale = 'en'
mixer.faker.name()          ## u'John Black'

# Use the mixer context manager
mixer.faker.phone()         ## u'1-438-238-1116'
with mixer.ctx(locale='fr'):
    mixer.faker.phone()     ## u'08 64 92 11 79'

mixer.faker.phone()         ## u'1-438-238-1116'

Bug tracker

If you have any suggestions, bug reports or annoyances please report them to the issue tracker at https://github.com/klen/mixer/issues

Contributing

Development of mixer happens at Github: https://github.com/klen/mixer

Contributors

License

Licensed under a BSD license.

Owner
Kirill Klenov
Kirill Klenov
A cross-platform GUI automation Python module for human beings. Used to programmatically control the mouse & keyboard.

PyAutoGUI PyAutoGUI is a cross-platform GUI automation Python module for human beings. Used to programmatically control the mouse & keyboard. pip inst

Al Sweigart 7.6k Jan 01, 2023
Generic automation framework for acceptance testing and RPA

Robot Framework Introduction Installation Example Usage Documentation Support and contact Contributing License Introduction Robot Framework is a gener

Robot Framework 7.7k Dec 31, 2022
A screamingly fast Python 2/3 WSGI server written in C.

bjoern: Fast And Ultra-Lightweight HTTP/1.1 WSGI Server A screamingly fast, ultra-lightweight WSGI server for CPython 2 and CPython 3, written in C us

Jonas Haag 2.9k Dec 21, 2022
The lightning-fast ASGI server. 🦄

The lightning-fast ASGI server. Documentation: https://www.uvicorn.org Community: https://discuss.encode.io/c/uvicorn Requirements: Python 3.6+ (For P

Encode 6k Jan 03, 2023
A modern API testing tool for web applications built with Open API and GraphQL specifications.

Schemathesis Schemathesis is a modern API testing tool for web applications built with Open API and GraphQL specifications. It reads the application s

Schemathesis.io 1.6k Jan 04, 2023
Coroutine-based concurrency library for Python

gevent Read the documentation online at http://www.gevent.org. Post issues on the bug tracker, discuss and ask open ended questions on the mailing lis

gevent 5.9k Dec 28, 2022
splinter - python test framework for web applications

splinter - python tool for testing web applications splinter is an open source tool for testing web applications using Python. It lets you automate br

Cobra Team 2.6k Dec 27, 2022
A drop-in replacement for Django's runserver.

About A drop in replacement for Django's built-in runserver command. Features include: An extendable interface for handling things such as real-time l

David Cramer 1.3k Dec 15, 2022
livereload server in python (MAINTAINERS NEEDED)

LiveReload Reload webpages on changes, without hitting refresh in your browser. Installation python-livereload is for web developers who know Python,

Hsiaoming Yang 977 Dec 14, 2022
Official mirror of https://gitlab.com/pgjones/hypercorn https://pgjones.gitlab.io/hypercorn/

Hypercorn Hypercorn is an ASGI web server based on the sans-io hyper, h11, h2, and wsproto libraries and inspired by Gunicorn. Hypercorn supports HTTP

Phil Jones 432 Jan 08, 2023
Hypothesis is a powerful, flexible, and easy to use library for property-based testing.

Hypothesis Hypothesis is a family of testing libraries which let you write tests parametrized by a source of examples. A Hypothesis implementation the

Hypothesis 6.4k Jan 01, 2023
The successor to nose, based on unittest2

Welcome to nose2 nose2 is the successor to nose. It's unittest with plugins. nose2 is a new project and does not support all of the features of nose.

738 Jan 09, 2023
create custom test databases that are populated with fake data

About Generate fake but valid data filled databases for test purposes using most popular patterns(AFAIK). Current support is sqlite, mysql, postgresql

Emir Ozer 2.2k Jan 06, 2023
Sixpack is a language-agnostic a/b-testing framework

Sixpack Sixpack is a framework to enable A/B testing across multiple programming languages. It does this by exposing a simple API for client libraries

1.7k Dec 24, 2022
AWS Lambda & API Gateway support for ASGI

Mangum Mangum is an adapter for using ASGI applications with AWS Lambda & API Gateway. It is intended to provide an easy-to-use, configurable wrapper

Jordan Eremieff 1.2k Jan 06, 2023
Python HTTP Server

Python HTTP Server Preview Languange and Code Editor: How to run? Download the zip first. Open the http.py and wait 1-2 seconds. You will see __pycach

SonLyte 16 Oct 21, 2021
Scalable user load testing tool written in Python

Locust Locust is an easy to use, scriptable and scalable performance testing tool. You define the behaviour of your users in regular Python code, inst

Locust.io 20.4k Jan 08, 2023
ASGI specification and utilities

asgiref ASGI is a standard for Python asynchronous web apps and servers to communicate with each other, and positioned as an asynchronous successor to

Django 1.1k Dec 29, 2022
Waitress - A WSGI server for Python 2 and 3

Waitress Waitress is a production-quality pure-Python WSGI server with very acceptable performance. It has no dependencies except ones which live in t

Pylons Project 1.2k Dec 30, 2022
Green is a clean, colorful, fast python test runner.

Green -- A clean, colorful, fast python test runner. Features Clean - Low redundancy in output. Result statistics for each test is vertically aligned.

Nathan Stocks 756 Dec 22, 2022