SQL for Humans™

Overview

Records: SQL for Humans™

https://travis-ci.org/kennethreitz/records.svg?branch=master

Records is a very simple, but powerful, library for making raw SQL queries to most relational databases.

https://farm1.staticflickr.com/569/33085227621_7e8da49b90_k_d.jpg

Just write SQL. No bells, no whistles. This common task can be surprisingly difficult with the standard tools available. This library strives to make this workflow as simple as possible, while providing an elegant interface to work with your query results.

Database support includes RedShift, Postgres, MySQL, SQLite, Oracle, and MS-SQL (drivers not included).


☤ The Basics

We know how to write SQL, so let's send some to our database:

import records

db = records.Database('postgres://...')
rows = db.query('select * from active_users')    # or db.query_file('sqls/active-users.sql')

Grab one row at a time:

>>> rows[0]
<Record {"username": "model-t", "active": true, "name": "Henry Ford", "user_email": "[email protected]", "timezone": "2016-02-06 22:28:23.894202"}>

Or iterate over them:

for r in rows:
    print(r.name, r.user_email)

Values can be accessed many ways: row.user_email, row['user_email'], or row[3].

Fields with non-alphanumeric characters (like spaces) are also fully supported.

Or store a copy of your record collection for later reference:

>>> rows.all()
[<Record {"username": ...}>, <Record {"username": ...}>, <Record {"username": ...}>, ...]

If you're only expecting one result:

>>> rows.first()
<Record {"username": ...}>

Other options include rows.as_dict() and rows.as_dict(ordered=True).

☤ Features

  • Iterated rows are cached for future reference.
  • $DATABASE_URL environment variable support.
  • Convenience Database.get_table_names method.
  • Command-line records tool for exporting queries.
  • Safe parameterization: Database.query('life=:everything', everything=42).
  • Queries can be passed as strings or filenames, parameters supported.
  • Transactions: t = Database.transaction(); t.commit().
  • Bulk actions: Database.bulk_query() & Database.bulk_query_file().

Records is proudly powered by SQLAlchemy and Tablib.

☤ Data Export Functionality

Records also features full Tablib integration, and allows you to export your results to CSV, XLS, JSON, HTML Tables, YAML, or Pandas DataFrames with a single line of code. Excellent for sharing data with friends, or generating reports.

>>> print(rows.dataset)
username|active|name      |user_email       |timezone
--------|------|----------|-----------------|--------------------------
model-t |True  |Henry Ford|[email protected]|2016-02-06 22:28:23.894202
...

Comma Separated Values (CSV)

>>> print(rows.export('csv'))
username,active,name,user_email,timezone
model-t,True,Henry Ford,[email protected],2016-02-06 22:28:23.894202
...

YAML Ain't Markup Language (YAML)

>>> print(rows.export('yaml'))
- {active: true, name: Henry Ford, timezone: '2016-02-06 22:28:23.894202', user_email: model-t@gmail.com, username: model-t}
...

JavaScript Object Notation (JSON)

>>> print(rows.export('json'))
[{"username": "model-t", "active": true, "name": "Henry Ford", "user_email": "[email protected]", "timezone": "2016-02-06 22:28:23.894202"}, ...]

Microsoft Excel (xls, xlsx)

with open('report.xls', 'wb') as f:
    f.write(rows.export('xls'))

Pandas DataFrame

>>> rows.export('df')
    username  active       name        user_email                   timezone
0    model-t    True Henry Ford model-t@gmail.com 2016-02-06 22:28:23.894202

You get the point. All other features of Tablib are also available, so you can sort results, add/remove columns/rows, remove duplicates, transpose the table, add separators, slice data by column, and more.

See the Tablib Documentation for more details.

☤ Installation

Of course, the recommended installation method is pipenv:

$ pipenv install records[pandas]
✨🍰✨

☤ Command-Line Tool

As an added bonus, a records command-line tool is automatically included. Here's a screenshot of the usage information:

Screenshot of Records Command-Line Interface.

☤ Thank You

Thanks for checking this library out! I hope you find it useful.

Of course, there's always room for improvement. Feel free to open an issue so we can make Records better, stronger, faster.

Owner
Kenneth Reitz
Software Engineer focused on abstractions, reducing cognitive overhead, and Design for Humans.
Kenneth Reitz
Simplest SQL mapper in Python, probably

SQL MAPPER Basically what it does is: it executes some SQL thru a database connector you fed it, maps it to some model and gives to u. Also it can cre

2 Nov 07, 2022
Pystackql - Python wrapper for StackQL

pystackql - Python Library for StackQL Python wrapper for StackQL Usage from pys

StackQL Studios 6 Jul 01, 2022
A tiny python web application based on Flask to set, get, expire, delete keys of Redis database easily with direct link at the browser.

First Redis Python (CRUD) A tiny python web application based on Flask to set, get, expire, delete keys of Redis database easily with direct link at t

Max Base 9 Dec 24, 2022
PostgreSQL database access simplified

Queries: PostgreSQL Simplified Queries is a BSD licensed opinionated wrapper of the psycopg2 library for interacting with PostgreSQL. The popular psyc

Gavin M. Roy 251 Oct 25, 2022
A HugSQL-inspired database library for Python

PugSQL PugSQL is a simple Python interface for using parameterized SQL, in files. See pugsql.org for the documentation. To install: pip install pugsql

Dan McKinley 558 Dec 24, 2022
A simple wrapper to make a flat file drop in raplacement for mongodb out of TinyDB

Purpose A simple wrapper to make a drop in replacement for mongodb out of tinydb. This module is an attempt to add an interface familiar to those curr

180 Jan 01, 2023
Anomaly detection on SQL data warehouses and databases

With CueObserve, you can run anomaly detection on data in your SQL data warehouses and databases. Getting Started Install via Docker docker run -p 300

Cuebook 171 Dec 18, 2022
Create a database, insert data and easily select it with Sqlite

sqliteBasics create a database, insert data and easily select it with Sqlite Watch on YouTube a step by step tutorial explaining this code: https://yo

Mariya 27 Dec 27, 2022
ClickHouse Python Driver with native interface support

ClickHouse Python Driver ClickHouse Python Driver with native (TCP) interface support. Asynchronous wrapper is available here: https://github.com/myma

Marilyn System 957 Dec 30, 2022
Application which allows you to make PostgreSQL databases with Python

Automate PostgreSQL Databases with Python Application which allows you to make PostgreSQL databases with Python I used the psycopg2 library which is u

Marc-Alistair Coffi 0 Dec 31, 2021
An asyncio compatible Redis driver, written purely in Python. This is really just a pet-project for me.

asyncredis An asyncio compatible Redis driver. Just a pet-project. Information asyncredis is, like I've said above, just a pet-project for me. I reall

Vish M 1 Dec 25, 2021
Py2neo is a comprehensive toolkit for working with Neo4j from within Python applications or from the command line.

Py2neo Py2neo is a client library and toolkit for working with Neo4j from within Python applications and from the command line. The library supports b

Nigel Small 1.2k Jan 02, 2023
PyRemoteSQL is a python SQL client that allows you to connect to your remote server with phpMyAdmin installed.

PyRemoteSQL Python MySQL remote client Basically this is a python SQL client that allows you to connect to your remote server with phpMyAdmin installe

ProbablyX 3 Nov 04, 2022
Tool for synchronizing clickhouse clusters

clicksync Tool for synchronizing clickhouse clusters works only with partitioned MergeTree tables can sync clusters with different node number uses in

Alexander Rumyantsev 1 Nov 30, 2021
Import entity definition document into SQLie3. Manage the entity. Also, create a "Create Table SQL file".

EntityDocumentMaker Version 1.00 After importing the entity definition (Excel file), store the data in sqlite3. エンティティ定義(Excelファイル)をインポートした後、データをsqlit

G-jon FujiYama 1 Jan 09, 2022
Simple Python demo app that connects to an Oracle DB.

Cloud Foundry Sample Python Application Connecting to Oracle Simple Python demo app that connects to an Oracle DB. The app is based on the example pro

Daniel Buchko 1 Jan 10, 2022
A pandas-like deferred expression system, with first-class SQL support

Ibis: Python data analysis framework for Hadoop and SQL engines Service Status Documentation Conda packages PyPI Azure Coverage Ibis is a toolbox to b

Ibis Project 2.3k Jan 06, 2023
Official Python low-level client for Elasticsearch

Python Elasticsearch Client Official low-level client for Elasticsearch. Its goal is to provide common ground for all Elasticsearch-related code in Py

elastic 3.8k Jan 01, 2023
Amazon S3 Transfer Manager for Python

s3transfer - An Amazon S3 Transfer Manager for Python S3transfer is a Python library for managing Amazon S3 transfers. Note This project is not curren

the boto project 158 Jan 07, 2023
Py2neo is a comprehensive toolkit for working with Neo4j from within Python applications or from the command line.

Py2neo v3 Py2neo is a client library and toolkit for working with Neo4j from within Python applications and from the command line. The core library ha

64 Oct 14, 2022