Python data loader for Solar Orbiter's (SolO) Energetic Particle Detector (EPD).

Overview

solo-epd-loader

Python data loader for Solar Orbiter's (SolO) Energetic Particle Detector (EPD). Provides level 2 (l2) and low latency (ll) data obtained through CDF files from ESA's Solar Orbiter Archive (SOAR) for the following sensors:

  • Electron Proton Telescope (EPT)
  • High Energy Telescope (HET)
  • SupraThermal Electrons and Protons (STEP)

Installation

solo_epd_loader requires python >= 3.6, and it depends on cdflib and heliopy (which will be automatically installed). It can be installed from PyPI using:

pip install solo-epd-loader

Usage

The standard usecase is to utilize the epd_load function, which returns Pandas dataframe(s) of the EPD measurements and a dictionary containing information on the energy channels.

from solo_epd_loader import epd_load

df_1, df_2, energies = \
    epd_load(sensor, viewing, level, startdate, enddate, path, autodownload)

Input

  • sensor: ept, het, or step (string)
  • viewing: sun, asun, north, or south (string); not needed for sensor = step
  • level: ll or l2 (string)
  • startdate, enddate: YYYYMMDD, e.g., 20210415 (integer) (if no enddate is provided, enddate = startdate will be used)
  • path: directory in which Solar Orbiter data is/should be organized; e.g. /home/userxyz/solo/data/ (string)
  • autodownload: if True will try to download missing data files from SOAR (bolean)

Return

  • For sensor = ept or het:
    1. Pandas dataframe with proton fluxes and errors (for EPT also alpha particles) in ‘particles / (s cm^2 sr MeV)’
    2. Pandas dataframe with electron fluxes and errors in ‘particles / (s cm^2 sr MeV)’
    3. Dictionary with energy information for all particles:
      • String with energy channel info
      • Value of lower energy bin edge in MeV
      • Value of energy bin width in MeV
  • For sensor = step:
    1. Pandas dataframe with fluxes and errors in ‘particles / (s cm^2 sr MeV)’
    2. Dictionary with energy information for all particles:
      • String with energy channel info
      • Value of lower energy bin edge in MeV
      • Value of energy bin width in MeV

Data folder structure

The path variable provided to the module should be the base directory where the corresponding cdf data files should be placed in subdirectories. First subfolder defines the data product level (l2 or low_latency at the moment), the next one the instrument (so far only epd), and finally the sensor (ept, het or step).

For example, the folder structure could look like this: /home/userxyz/solo/data/l2/epd/het. In this case, you should call the loader with path=/home/userxyz/solo/data; i.e., the base directory for the data.

You can use the (automatic) download function described in the following section to let the subfolders be created initially automatically. NB: It might be that you need to run the code with sudo or admin privileges in order to be able to create new folders on your system.

Data download within Python

While using epd_load() to obtain the data, one can choose to automatically download missing data files from SOAR directly from within python. They are saved in the folder provided by the path argument (see above). For that, just add autodownload=True to the function call:

from solo_epd_loader import epd_load

df_protons, df_electrons, energies = \
    epd_load(sensor='het', viewing='sun', level='l2',
             startdate=20200820, enddate=20200821, \
             path='/home/userxyz/solo/data/', autodownload=True)

# plot protons and alphas
ax = df_protons.plot(logy=True, subplots=True, figsize=(20,60))
plt.show()

# plot electrons
ax = df_electrons.plot(logy=True, subplots=True, figsize=(20,60))
plt.show()

Note: The code will always download the latest version of the file available at SOAR. So in case a file V01.cdf is already locally present, V02.cdf will be downloaded nonetheless.

Example 1 - low latency data

Example code that loads low latency (ll) electron and proton (+alphas) fluxes (and errors) for EPT NORTH telescope from Apr 15 2021 to Apr 16 2021 into two Pandas dataframes (one for protons & alphas, one for electrons). In general available are ‘sun’, ‘asun’, ‘north’, and ‘south’ viewing directions for ‘ept’ and ‘het’ telescopes of SolO/EPD.

from solo_epd_loader import *

df_protons, df_electrons, energies = \
    epd_load(sensor='ept', viewing='north', level='ll',
             startdate=20210415, enddate=20210416, \
             path='/home/userxyz/solo/data/')

# plot protons and alphas
ax = df_protons.plot(logy=True, subplots=True, figsize=(20,60))
plt.show()

# plot electrons
ax = df_electrons.plot(logy=True, subplots=True, figsize=(20,60))
plt.show()

Example 2 - level 2 data

Example code that loads level 2 (l2) electron and proton (+alphas) fluxes (and errors) for HET SUN telescope from Aug 20 2020 to Aug 20 2020 into two Pandas dataframes (one for protons & alphas, one for electrons).

from solo_epd_loader import epd_load

df_protons, df_electrons, energies = \
    epd_load(sensor='het', viewing='sun', level='l2',
             startdate=20200820, enddate=20200821, \
             path='/home/userxyz/solo/data/')

# plot protons and alphas
ax = df_protons.plot(logy=True, subplots=True, figsize=(20,60))
plt.show()

# plot electrons
ax = df_electrons.plot(logy=True, subplots=True, figsize=(20,60))
plt.show()

Example 3 - reproducing EPT data from Fig. 2 in Gómez-Herrero et al. 2021 [1]

from solo_epd_loader import epd_load

# set your local path here
lpath = '/home/userxyz/solo/data'

# load data
df_protons, df_electrons, energies = \
    epd_load(sensor='ept', viewing='sun', level='l2', startdate=20200708,
             enddate=20200724, path=lpath, autodownload=True)

# change time resolution to get smoother curve (resample with mean)
resample = '60min'

fig, axs = plt.subplots(2, sharex=True)
fig.suptitle('EPT Sun')

# plot selection of channels
for channel in [0, 8, 16, 26]:
    df_electrons['Electron_Flux'][f'Electron_Flux_{channel}']\
        .resample(resample).mean().plot(ax = axs[0], logy=True,
        label=energies["Electron_Bins_Text"][channel][0])
for channel in [6, 22, 32, 48]:
    df_protons['Ion_Flux'][f'Ion_Flux_{channel}']\
        .resample(resample).mean().plot(ax = axs[1], logy=True,
        label=energies["Ion_Bins_Text"][channel][0])

axs[0].set_ylim([0.3, 4e6])
axs[1].set_ylim([0.01, 5e8])

axs[0].set_ylabel("Electron flux\n"+r"(cm$^2$ sr s MeV)$^{-1}$")
axs[1].set_ylabel("Ion flux\n"+r"(cm$^2$ sr s MeV)$^{-1}$")
axs[0].legend()
axs[1].legend()
plt.subplots_adjust(hspace=0)
plt.show()

NB: This is just an approximate reproduction with different energy channels (smaller, not combined) and different time resolution! Figure

Example 4 - reproducing EPT data from Fig. 2 in Wimmer-Schweingruber et al. 2021 [2]

from solo_epd_loader import epd_load
import datetime

# set your local path here
lpath = '/home/userxyz/solo/data'

# load data
df_protons_sun, df_electrons_sun, energies = \
    epd_load(sensor='ept', viewing='sun', level='l2',
             startdate=20201210, enddate=20201211,
             path=lpath, autodownload=True)
df_protons_asun, df_electrons_asun, energies = \
    epd_load(sensor='ept', viewing='asun', level='l2',
             startdate=20201210, enddate=20201211,
             path=lpath, autodownload=True)
df_protons_south, df_electrons_south, energies = \
    epd_load(sensor='ept', viewing='south', level='l2',
             startdate=20201210, enddate=20201211,
             path=lpath, autodownload=True)
df_protons_north, df_electrons_north, energies = \
    epd_load(sensor='ept', viewing='north', level='l2',
             startdate=20201210, enddate=20201211,
             path=lpath, autodownload=True)

# plot mean intensities of two energy channels; 'channel' defines the lower one
channel = 6
ax = pd.concat([df_electrons_sun['Electron_Flux'][f'Electron_Flux_{channel}'],
                df_electrons_sun['Electron_Flux'][f'Electron_Flux_{channel+1}']],
                axis=1).mean(axis=1).plot(logy=True, label='sun', color='#d62728')
ax = pd.concat([df_electrons_asun['Electron_Flux'][f'Electron_Flux_{channel}'],
                df_electrons_asun['Electron_Flux'][f'Electron_Flux_{channel+1}']],
                axis=1).mean(axis=1).plot(logy=True, label='asun', color='#ff7f0e')
ax = pd.concat([df_electrons_north['Electron_Flux'][f'Electron_Flux_{channel}'],
                df_electrons_north['Electron_Flux'][f'Electron_Flux_{channel+1}']],
                axis=1).mean(axis=1).plot(logy=True, label='north', color='#1f77b4')
ax = pd.concat([df_electrons_south['Electron_Flux'][f'Electron_Flux_{channel}'],
                df_electrons_south['Electron_Flux'][f'Electron_Flux_{channel+1}']],
                axis=1).mean(axis=1).plot(logy=True, label='south', color='#2ca02c')

plt.xlim([datetime.datetime(2020, 12, 10, 23, 0),
          datetime.datetime(2020, 12, 11, 12, 0)])

ax.set_ylabel("Electron flux\n"+r"(cm$^2$ sr s MeV)$^{-1}$")
plt.title('EPT electrons ('+str(energies['Electron_Bins_Low_Energy'][channel])
          + '-' + str(energies['Electron_Bins_Low_Energy'][channel+2])+' MeV)')
plt.legend()
plt.show()

NB: This is just an approximate reproduction; e.g., the channel combination is a over-simplified approximation! image1

References

[1] First near-relativistic solar electron events observed by EPD onboard Solar Orbiter, Gómez-Herrero et al., A&A, 656 (2021) L3, https://doi.org/10.1051/0004-6361/202039883
[2] First year of energetic particle measurements in the inner heliosphere with Solar Orbiter’s Energetic Particle Detector, Wimmer-Schweingruber et al., A&A, 656 (2021) A22, https://doi.org/10.1051/0004-6361/202140940

License

This project is Copyright (c) Jan Gieseler and licensed under the terms of the BSD 3-clause license. This package is based upon the Openastronomy packaging guide which is licensed under the BSD 3-clause licence. See the licenses folder for more information.

Comments
  • Environment variable for path

    Environment variable for path

    Would it be possible to use (optionally) an environment variable for the path (preferably the same for all loaders)? That would make it much easier for multi-user environments to have data in one location only. Granted, it would possibly also need some file permission changing as well...

    enhancement 
    opened by tlml 12
  • Replacing FILLVALUES not working with pandas 1.5.0

    Replacing FILLVALUES not working with pandas 1.5.0

    At least until pandas 1.4.4 the replacement of FILLVAUES done by the following code worked: https://github.com/jgieseler/solo-epd-loader/blob/f92e4e995a273d5755792c3f02e4ea3c33cfc675/solo_epd_loader/init.py#L754-L761

    But since pandas 1.5.0 it doesn't work anymore, and the values of -1e+31 are not replaced with np.nan's.

    I don't know the reason, maybe it has to do with the fact that the corresponding DataFrames have a MultiIndex.

    bug 
    opened by jgieseler 1
  • Catch error that python doesn't have rights to create folders

    Catch error that python doesn't have rights to create folders

    Data for the different detectors are downloaded in subdirectories of the data directory provided by path. Under some circumstances, the script doesn't have the necessary rights to create these folders if they don't already exist. Then a FileNotFoundError: [Errno 2] No such file or directory: {path+subdir+file} is raised.

    Catch this problem and/or provide a meaningful warning message.

    bug 
    opened by jgieseler 1
  • Change from heliopy's cdf2lib to sunpy's read_cdf

    Change from heliopy's cdf2lib to sunpy's read_cdf

    Change the function to read cdf files from heliopy's cdf2lib() to sunpy's read_cdf() in _read_epd_cdf(); i.e., applies to EPT and HET data, not STEP data. The latter is read in manually using cdflib

    opened by jgieseler 0
  • Make downloading of all viewings optional

    Make downloading of all viewings optional

    SolO/EPD/EPT has for viewing directions; each delivered in a separate data file. Right now, all viewing files are downloaded for a requested day, even so the call to solo-epd-loader specifically asks for a single viewing direction and only returns that data. This has been included in the beginning because usually we have been interested in having all viewing-direction files anyhow. But it makes sense to have this at least as an option, so that you can deactivate this behaviour in case you want to only have e.g. the 'sun' viewing direction.

    enhancement 
    opened by jgieseler 0
  • Include resampling functionality

    Include resampling functionality

    Include resampling functionality like https://github.com/serpentine-h2020/SEPpy/blob/bc2e3e0662a019147d25bd554edbceaf7328e25b/seppy/loader/stereo.py#L24-L38

    enhancement 
    opened by jgieseler 0
  • Clean install_requires in setup.cfg

    Clean install_requires in setup.cfg

    With https://github.com/jgieseler/solo-epd-loader/commit/8fede59ac7a529cb1189f1ac40ddf20755b5cdaf bz4 and datetime have been added to the install_requires in setup.cfg (in the progress of establishing some testing), but this is not liked by the conda-forge version, which complains when bz4 and datetime are listed as requirements in the meta.yaml file. This needs to be sorted out.

    Until then, pip check has been removed from meta.yaml, cf. https://github.com/jgieseler/solo-epd-loader-feedstock/commit/9d9eda523e1690fc1d520bca4a4a40eba521b6be

    opened by jgieseler 0
  • Set level='l2' as default

    Set level='l2' as default

    Right now, level is a required positional argument. Set this by default to 'l2' because this should be the standard data product one should use if in doubt.

    opened by jgieseler 0
  • Add calc_av_en_flux_EPD()

    Add calc_av_en_flux_EPD()

    Add function that averages the flux of several energy channels into a combined energy channel. In principle already available here, but needs to be corectly integrated.

    enhancement 
    opened by jgieseler 1
  • Use sunpy_soar for downloading data from SOAR

    Use sunpy_soar for downloading data from SOAR

    sunpy_soar supports since v1.4 also low latency data. So it now is able to obtain all the same data we're downloading until now with solo_epd_loader (the source is in both cases ESA's SOAR). For the future, it would be worthwhile to completely move the downloading process to sunpy_soar to avoid duplication (and sunpy_soar is definitely much better written than my code 😅).

    enhancement 
    opened by jgieseler 1
Releases(v0.1.11)
Owner
Jan Gieseler
Jan Gieseler
jmespath.rs Python binding

rjmespath-py jmespath.rs Python binding.

messense 3 Dec 14, 2022
Python project setup, updater, and launcher

Launcher Python project setup, updater, and launcher Purpose: Increase project productivity and provide features easily. Once installed as a git submo

DAAV, LLC 1 Jan 07, 2022
python for windows extensions

This is the readme for the Python for Win32 (pywin32) extensions source code. See CHANGES.txt for recent changes. 'setup.py' is a standard distutils

27 Dec 08, 2022
An open-source systems and controls toolbox for Python3

harold A control systems package for Python=3.6. Introduction This package is written with the ambition of providing a full-fledged control systems s

Ilhan Polat 157 Dec 05, 2022
oracle arm registration script.

oracle_arm oracle arm registration script. 乌龟壳刷ARM脚本 本脚本优点 简单,主机配置好oci,然后下载main.tf即可,不用自己获取各种参数。 运行环境配置 本简单脚本使用python3编写,请自行配置好python3环境和requests库。(高版

test1234455 419 Jan 01, 2023
This is a simple SV calling package for diploid assemblies.

dipdiff This is a simple SV calling package for diploid assemblies. It uses a modified version of svim-asm. The package includes its own version minim

Mikhail Kolmogorov 11 Jan 05, 2023
edgetest is a tox-inspired python library that will loop through your project's dependencies, and check if your project is compatible with the latest version of each dependency

Bleeding edge dependency testing Full Documentation edgetest is a tox-inspired python library that will loop through your project's dependencies, and

Capital One 16 Dec 07, 2022
Different steganography methods with examples and my own small image database

literally-the-most-useless-project [Different steganography methods with examples and my own small image database] This project currently contains thr

Kamyishka 1 Dec 09, 2022
It was created to conveniently respond to events such as donation, follow, and hosting using the Alert Box provided by twip to streamers

This library is not an official library of twip. It was created to conveniently respond to events such as donation, follow, and hosting using the Alert Box provided by twip to streamers.

junah201 8 Nov 19, 2022
Backups made easy, automated, monitored and SECURED with an audited encryption

Backup Controller Backups made easy, automated, monitored and SECURED with an audited encryption. Schedules backup tasks executed by Backup Maker, upl

RiotKit 1 Jan 30, 2022
PyToQlik is a library that allows you to integrate Qlik Desktop with Jupyter notebooks

PyToQlik is a library that allows you to integrate Qlik Desktop with Jupyter notebooks. With it you can: Open and edit a Qlik app inside a Ju

BIX Tecnologia 16 Sep 09, 2022
Example of my qtile config using the gruvbox colorscheme.

QTILE config Example of my qtile config using the gruvbox colorscheme. unicodes.py unicodes.py returns a widget.TextBox with a unicode. Currently it c

Imanuel Febie 31 Jan 02, 2023
API development made easy: a smart Python 3 API framework

appkernel - API development made easy What is Appkernel? A super-easy to use API framework, enabling API creation from zero to production within minut

156 Sep 28, 2022
Home Assistant integration for spanish electrical data providers (e.g., datadis)

homeassistant-edata Esta integración para Home Assistant te permite seguir de un vistazo tus consumos y máximas potencias alcanzadas. Para ello, se ap

VMG 163 Jan 05, 2023
Using Python to parse through email logs received through several backup systems.

outlook-automated-backup-control Backup monitoring on a mailbox: In this mailbox there will be backup logs. The identification will based on the follo

Connor 2 Sep 28, 2022
Add-In for Blender to automatically save files when rendering

Autosave - Render: Automatically save .blend, .png and readme.txt files when rendering with Blender Purpose This Blender Add-On provides an easy way t

Volker 9 Aug 10, 2022
BMI-Calculator: Program to Calculate Body Mass Index (BMI)

The Body Mass Index (BMI) or Quetelet index is a value derived from the mass (weight) and height of an individual, male or female.

PyLaboratory 0 Feb 07, 2022
Python script to autodetect a base set of swiftlint rules.

swiftlint-autodetect Python script to autodetect a base set of swiftlint rules. Installation brew install pipx

Jonathan Wight 24 Sep 20, 2022
Tool that adds githuh profile views to ur acc

Tool that adds githuh profile views to ur acc

Lamp 2 Nov 28, 2021
Create standalone, installable R Shiny apps using Electron

Create standalone, installable R Shiny apps using Electron

Chase Clark 5 Dec 24, 2021