a simple proof system I made to learn math without any mistakes

Overview

math_up

a simple proof system I made to learn math without any mistakes




0. Short Introduction


test yourself, enjoy your math!

math_up is an NBG-based, very simple but programmable proof verifier written in Python.
Some notable features are:

  • super-simplicity, short learning time
  • programmability
  • fully written in Python (including all the proofs!)
  • trade-off between runtime efficiency & reductionism
  • non-generic implementation (supports only 1st-order logic, NBG set theory)
  • supports on Fitch-style proofs, "let" variables and many other intuitive APIs
  • rule-based, without any AI-like things

The following sections assumes you already know basic concepts on logic and set theory.

Author : Hyunwoo Yang
  • Department of Mathematical Sciences, Seoul National University (2013 ~ 2019)
  • Modem R&D Group, Samsung Networks (2019 ~ )

1. Sentence Generation


1-1. Variables

You may use alphabets from a to z, and also from A to Z.
Just calling clear() assures all the variables are new:

clear() # clear all alphabets

1-2. Atomic Properties

YourPropertyName = make_property("its_formal_name") # required at the first time
YourPropertyName(a, b) # usage

If the property is a binary relation, you can use operator overloading.
For example:

a 

1-3. Logical Connections

~ P         # not P
P & Q       # P and Q
P | Q       # P or Q
P >> Q      # P imply Q
P == Q      # P iff Q
true        # true
false       # false

1-4. Quantifiers

All(x, y, P(x, y)) # for all x and y, P(x, y)
Exist(x, y, z, P(x, y, z)) # there exists x, y and z such that P(x, y, z)
UniquelyExist(a, P(a, t)) # a is the only one such that P(a, t) 

1-5. Functions

YourFunctionName = make_function("its_formal_name") # required at the first time
YourFunctionName(x, y, z) # usage

If the function is a binary operator, you can use operator overloading.
For example:

x 

2. Numbering or Naming Statements

(your_sentence) @ 193
(your_sentence) @ "my_theorem"

Each number allows reuses, but the string names must be unique.
Hence, please number the sentences during the proof, but name the theorem at the last.

3. Inferences

(your_sentence) @ (save_as, INFERENCE_TO_USE, *arguments, *reasons)

save_as is a number or string you'd like to save your_sentence as.
INFERENCE_TO_USE depends on the inference you want to use to deduce your_sentence.
Some arguments are required or not, depending on the INFERENCE_TO_USE
reasons are the numbers or strings corresponding to the sentences already proved, which are now being used to deduce your_sentence.

3-1. DEDUCE

with (your_assumption) @ 27 :
    # your proof ...
    (your_conclusion) @ (39, SOME_INFERENCE, argument0, argument1, reason0, reason1)
(your_assumption >> your_conclusion) @ (40, DEDUCE)

math_up supports Fitch-style proofs.
That means, you may make an assumption P, prove Q and then deduce (P implies Q).
The inference to use is DEDUCE. DEDUCE doesn't require any arguments or reasons, but it must follow right after the end of the previous with block.

3-2. TAUTOLOGY

(A >> B) @ (152, INFERENCE0, argument0, reason0, reason1)
A @ (153, INFERENCE1, argument1, argument2, reason2)
B @ (154, TAUTOLOGY, 152, 153)

When is statement is a logical conclusion of previously proved sentences, and it can be checked by simply drawing the truth table, use TAUTOLOGY.
It doesn't require any arguments.
Put the sentences needed to draw the truth table as reasons.

3-2. DEFINE_PROPERTY

(NewProperty(x, y) == definition) @ ("save_as", DEFINE_PROPERTY, "formal_name_of_the_property")

You can freely define new properties with DEFINE_PROPERTY.
It does not requires any reasoning, but requires the formal name of the new property as the only argument.

3-3. DEFINE_FUNCTION

All(x, y, some_condition(x, y) >> UniquelyExist(z, P(x, y, z))) @ (70, INFERENCE0)
All(x, y, some_condition(x, y) >> P(x, y, NewFunction(z))) @ ("save_as", DEFINE_FUNCTION, 70)

Defining new function requires a sentence with a uniquely-exist quantifier.
Using DEFINE_FUNCTION, you can convert (for all x and y, if P(x, y) there is only one z such that Q(x, y, z)) into (for all x and y, if P(x, y) then Q(x, y, f(x, y)))
It requires no arguments, but one uniquely-exist setence as the only reason.


3-4. DUAL

(~All(x, P(x)) == Exist(x, ~P(x))) @ (32, DUAL)
((~Exist(y, Q(z, y))) == All(y, ~Q(z, y))) @ (33, DUAL)

not all == exist not, while not exist == all not.
To use these equivalences, use DUAL.
It requires no arguments or reasons.

3-5. FOUND

P(f(c)) @ (5, INFERENCE0, argument0)
Exist(x, P(x)) @ (6, FOUND, f(c), 5)

If you found a term satisfying the desired property, you can deduce the existence by FOUND.
It requires the term you actually found as an argument, and a sentence showing the desired property as the only reason.

3-6. LET

Exist(x, P(x)) @ (6, INFERENCE0, argument0, 5)
P(c) @ (7, LET, c, 6)

This one is the inverse of FOUND- i.e. it gives a real example from the existence.
It requires a fresh variable(i.e. never been used after the last clean()) to use as an existential bound variable as an argument.
Also, of course, an existential statement is required as the only reason.

3-7. PUT

All(x, P(x, z)) @ (13, INFERENCE0, 7, 9)
P(f(u), z) @ (14, PUT, f(u), 13)

PUT is used to deduce a specific example from the universally quantifiered sentence.
The term you want to put is an argument, and of course, the universally quantifiered sentence is the only reason.

3-8. REPLACE

P(x, a, a)
(a == f(c)) @ (8, INFERENCE0, argument0, 7)
P(x, a, f(c)) @ (9, REPLACE, 8)

When the two terms s and t are shown to be equal to each other, and the sentence Q is obtained from a previously proved P by interchainging s and t several times, REPLACE deduces Q from the two reasoning, i.e. s == t and P.
No arguments are needed.

3-9. AXIOM

any_sentence @ ("save_as", AXIOM)

AXIOM requires no inputs, but simply makes a sentence to be proved.

3-10. BY_UNIQUE

UniquelyExist(x, P(x)) @ (0, INFERENCE0)
P(a) @ (1, INFERENCE1, argument0)
P(f(b)) @ (2, INFERENCE2, argument1)
(a == f(b)) @ (3, BY_UNIQUE, 0, 1, 2)

BY_UNIQUE requires no arguments, but requires three reasons.
The first one is about unique existence, and the last two are specifications.
You can conclude two terms used for specifications respectively are equal to each other.
3-10. CLAIM_UNIQUE

Exist(x, P(x)) @ (6, INFERENCE0, argument0, 5)
P(c) @ (7, LET, c, 6)
P(d) @ (8, LET, d, 6)
# your proof ...
(c == d) @ (13, INFERENCE0, 12)
UniquelyExist(x, P(x)) @ (14, CLAIM_UNIQUE, 13)

CLAIM_UNIQUE upgrades an existence statement to a unique-existence statement.
Before you use it, you have to apply LET two times, and show the result variables are the same.
No arguments are required, but the equality is consumed as the only reason.

3-11. DEFINE_CLASS

UniquelyExist(C, All(x, (x in C) == UniquelyExist(a, UniquelyExist(b, (x == Tuple(a,b)) and Set(a) & Set(b) & P(a, b))))) @ (17, DEFINE_CLASS, C, x, [a, b], P(a, b))

This implements the class existence theorem of the NBG set theory.
No reasoning is required, but there are four arguments:
C : a fresh variable, to be a newly defined class
x : a fresh variable, to indicate the elements of C
[a, b, ...] : list of the components of x
P(a, b) : a condition satisfied by the components


4. Remarks


4-1. Trade-Off : Runtime Efficiency vs. Reductionism

The class existence theorem is actually not an axiom, but is PROVABLE, due to Goedel
However, proving it requires recursively break down all the higher-level definitions to the primitive ones
I'm afraid our computers would not have enough resourse to do such tedious computation...
Similarly, meta-theorems such as deduction theorem, RULE-C, function definition are NOT reduced by this program.


4-2. Trade-Off : Readability vs. Completeness

Actually, we need one more axiom: All(x, P and Q(x)) >> (P and All(x, Q(x)))
But I'll not implement this here... it may not, and should not be needed for readable proofs.
For the similar reasons, the program doesn't allow weird sentences like All(x, All(x, P(x))) or All(x, P(y)).
Strictly speaking, math_up is an incomplete system to restrict the proofs more readable.


4-3. Acknowledgement

Thanks to everyone taught me math & CS.
Mendelson's excellent book, Introduction to Mathematical Logic was extremely helpful.
Jech's Set Theory was hard to read but great.

Owner
양현우
양현우
Identify and annotate mutations from genome editing assays.

CRISPR-detector Here we propose our CRISPR-detector to facilitate the CRISPR-edited amplicon and whole genome sequencing data analysis, with functions

hlcas 2 Feb 20, 2022
PythonKafkaCompose is an upgrade of the amazing work done in liveMaps

PythonKafkaCompose is an upgrade of the amazing work done in liveMaps It is a simple project composed by: an instance of Kafka a Py

5 Jun 19, 2022
A simple IDA Pro plugin to show all HexRays decompiler comments written by user

XRaysComments A simple IDA Pro plugin to show all HexRays decompiler comments written by user Installation Copy the file xray_comments.py to the plugi

Nox 20 Dec 27, 2022
Zeus - Advanced Punishments with Embeds.

Zeus Advanced Punishments with Embeds. Make sure to put the Discord Bot Token in the " TOKEN = '' " Language Python Features Ban Kick Mute Unmute Warn

2 Jan 05, 2022
🤡 Multiple Discord selfbot src deobfuscated !

Deobfuscated selfbot sources About. If you whant to add src, please make pull requests. If you whant to deobfuscate src, send mail to

Sreecharan 5 Sep 13, 2021
Basic-Killfeed - A simple DayZ Console Killfeed

Basic-Killfeed A simple DayZ Console Killfeed. Setup Install Python Version 3.10

Nick 1 Apr 25, 2022
Vaksina - Vaksina COVID QR Validation Checker With Python

Vaksina COVID QR Validation Checker Vaksina is a general purpose library intende

Michael Casadevall 33 Aug 20, 2022
Este projeto se trata de uma análise de campanhas de marketing de uma empresa que vende acessórios para veículos.

Marketing Campaigns Este projeto se trata de uma análise de campanhas de marketing de uma empresa que vende acessórios para veículos. 1. Problema A em

Bibiana Prevedello 1 Jan 12, 2022
Comprehensive Python Cheatsheet

Comprehensive Python Cheatsheet

Jure Šorn 31.3k Dec 30, 2022
Python library for the analysis of dynamic measurements

Python library for the analysis of dynamic measurements The goal of this library is to provide a starting point for users in metrology and related are

Physikalisch-Technische Bundesanstalt - Department 9.4 'Metrology for the digital Transformation' 18 Dec 21, 2022
A script that will warn you, by opening a new browser tab, when there are new content in your favourite websites.

web check A script that will warn you, by opening a new browser tab, when there are new content in your favourite websites. What it does The script wi

Jaime Álvarez 52 Mar 15, 2022
Fixes your Microphone Level to one specific value.

MicLeveler Fixes your Microphone Level to one specific value. Intention A friend of mine has the problem that some programs are setting his microphone

Moritz Timpe 2 Oct 14, 2021
How to use Microsoft Bing to search for leaks?

Installation In order to install the project, you need install its dependencies: $ pip3 install -r requirements.txt Add your Bing API key to bingKey.t

Ernestas Kardzys 2 Sep 21, 2022
Intelligent Systems Project In Python

Intelligent Systems Project In Python

RLLAB 3 May 16, 2022
Coronavirus Tracker API

Coronavirus Tracker API Provides up-to-date data about Coronavirus outbreak. Includes numbers about confirmed cases, deaths and recovered. Support mul

Francisco Laguna 1 Oct 31, 2020
【教程】莉沫酱教你学继承!?

【教程】莉沫酱教你学继承! 众所周知,类的继承就是说当一个类死亡的时候,它的子类会获得它拥有的资源。 根据类的继承法不同,各个子类能获得的资源也不同。 继承法的类型 在解释继承法之前,我们先定义三个类,一个父类A,和它的子类B、C。 它们都拥有x、y、z三个属性。

黄巍 17 Dec 05, 2022
Just imagine normal bancho, but you can have multiple profiles and funorange speed up maps ranked

Local osu! server Just imagine normal bancho, but you can have multiple profiles and funorange speed up maps ranked (coming soon)! Windows Setup Insta

Cover 25 Nov 15, 2022
A collection of modern themes for Tkinter TTK

ttkbootstrap A collection of modern flat themes inspired by Bootstrap. Also includes TTK Creator which allows you to easily create and use your own th

Israel Dryer 827 Jan 04, 2023
Calculadora-basica - Calculator with basic operators

Calculadora básica Calculadora com operadores básicos; O programa solicitará a d

Vitor Antoni 2 Apr 26, 2022
An event-based script that is designed to improve your aim

Aim-Trainer Info: This is an event-based script that is designed to improve a user's aim. It was built using Python Turtle and the Random library. Ins

Ethan Francolla 4 Feb 17, 2022