Modelling the 30 salamander problem from `Pure Mathematics` by Martin Liebeck

Overview

Salamanders on an island

The Problem

From A Concise Introduction to Pure Mathematics By Martin Liebeck

Critic Ivor Smallbrain is watching the horror movie Salamanders on a Desert Island. In the film, there are 30 salamanders living on a desert island: 15 are red, 7 blue and 8 green. When two of a different colour meet, horrifyingly they both change into the third colour. (For example, if a red and a green meet, they both become blue.) When two of the same colour meet, they change into both of the other colours. (For example, if two reds meet, one becomes green and one becomes blue.) It is all quite terrifying. In between being horrified and terrified, Ivor idly wonders whether it could ever happen that at some instant in the future, all of the salamanders would be red. Can you help him ? (Hint: Consider the remainders of the totals of each colour when you divide by 3.)

Simulate the problem

import numpy as np
import random

Create the starting salamander population

pop = ['R']*15 + ['B']*7 + ['G']*8
pop = np.array(pop) # Convert to numpy array
all_col = set(pop) # Create set of all possible colours

pop
array(['R', 'R', 'R', 'R', 'R', 'R', 'R', 'R', 'R', 'R', 'R', 'R', 'R',
       'R', 'R', 'B', 'B', 'B', 'B', 'B', 'B', 'B', 'G', 'G', 'G', 'G',
       'G', 'G', 'G', 'G'], dtype='
   

Define a function for a random meeting

def meeting(gd = False):
    """
    Simulate meeting of 2 salamnders.
    Each is chosen at random from the list (without replacement)
    `gd = True` applies a proxy of gradient descent optimisation, avoiding reduction in the number of red salamanders
    """

    # Pick 2 salamanders at random
    rand_ind = random.sample(range(pop.size), 2)
    rand_sam = pop[rand_ind]

    x = rand_sam[0]
    y = rand_sam[1]

    # Apply gradient descent - skip the meeting if a red is selected, to avoid reducng the Reds number
    # (Note this is a gd proxy to reduce computation - it "should" be applied on the result of calculation rather than the input)
    if gd == True:
        if (x == 'R') | (y == 'R'): return

    # Find the colour(s) not selected
    diff = list(all_col.difference(rand_sam))
    
    # The salamanders are the same colour
    if x == y: 
        x = diff[0]
        y = diff[1]
    else: # The salamanders are different colour
        x = diff[0]
        y = x

    # Change the colours of the chosen salamanders
    pop[rand_ind[0]] = x
    pop[rand_ind[1]] = y

Run 1 million simulations

# Set number of meetings to simulate
iters = 1000000

# Run simulation of meetings
from collections import Counter
from tqdm.notebook import tqdm

random.seed(2718)
tracker = dict()
for i in tqdm(range(iters), miniters=iters/100):
    # Simulate a meeting
    meeting()
    # Save resulting population state
    tracker[i] = Counter(pop)
  0%|          | 0/1000000 [00:00

Analysis

The question posed gives a (big) hint to using modular arithmetic to assess this problem. A sample of the results is therefore taken and visualised in mod 3.

Sample first 100 results in modulo 3

# Sample the first 100 meetings to visualise progress
track_vals = list(tracker.values())
track_vals = track_vals[:100]

# Create a list of each colour in mod 3
r = []
b = []
g = []
for i in range(len(track_vals)):
    r.append(list(track_vals)[i]['R'] %3)
    b.append(list(track_vals)[i]['B'] %3)
    g.append(list(track_vals)[i]['G'] %3)
# Plot graph of population change in mod 3
import pylab as plt
from matplotlib.pyplot import figure
%matplotlib inline

figure(figsize=(25, 4), dpi=100)
plt.rcParams.update({'font.size': 15})

plt.plot(range(len(b)), b, 'b')
plt.plot(range(len(r)), r, 'r')
plt.plot(range(len(g)), g, 'g')
plt.title('Total Quantity of Salamanders in mod 3')
Text(0.5, 1.0, 'Total Quantity of Salamanders in mod 3')

png

Modulus importance

# Prepare some data for explanation
import pandas as pd
meet_s = [['-2','+1','+1']]
meet_s_mod = [['+1','+1','+1']]
meet_d = [['-1','-1','+2']]
meet_d_mod = [['+2','+2','+2']]

We observe that the red, blue, and green numbers are always different, and hold either a value of 0, 1, or 2 in mod3. This is important, as for there to be 30 Red salamanders, there need to be 0 Blue and 0 Green (total population is 30). In mod3, this would be equivalent to 0R, 0B, and 0G. In other words, for there to be all Red salamanders, there needs to be a combination of meetings such that all colours reach 0 (mod3). In this small sample, we can see that the values of each are always different in mod 3. Why is this?

The starting position of the population is 15R, 7B, and 8G. In mod3, this equates to 0R, 1B and 2G. Upon two salamanders of the same colour, x, meeting, we get a drop in 2 of that colour, and an increase of 1 for the other two colours, y and z:

pd.DataFrame(meet_s, ['xx'], ['x', 'y', 'z'])
x y z
xx -2 +1 +1

In mod3, this is equivalent to:

pd.DataFrame(meet_s_mod, ['xx'], ['x', 'y', 'z'])
x y z
xx +1 +1 +1

We see that for whichever colour, if the salamanders are the same colour, the same mathematical addition applies to all colours in mod3, such that there is no convergence between colours.
Two salamanders of different colour meeting results in:

pd.DataFrame(meet_d, ['xy'], ['x', 'y', 'z'])
x y z
xy -1 -1 +2

In mod3, this is rewritten:

pd.DataFrame(meet_d_mod, ['xy'], ['x', 'y', 'z'])
x y z
xy +2 +2 +2

Again, where salamander colours are different, there is no convergence between colours in mod3.

This exhausts all meeting possibilities, and shows there is no possibility of convergence between quantities of each colour in mod3. With this being the case, it is impossible for all to reach 0 (mod3). This means that there can never be 30 Red salamanders.

However, 29R is possible, with 0B and 1G. This maintains the count structure in mod3 as this would be 2R, 0B, 1G (mod3).

Total Reds

Max Reds

# Show how the number of reds changes over trials
r_vals = []
for trial in tracker.values():
    r_vals.append(trial['R'])

graph_len = np.min([250,len(r_vals)])
mov_max = int(np.ceil(len(r_vals)/graph_len))

red_mov_max = []
for i in range(graph_len):
    red_mov_max.append(np.max(r_vals[i*mov_max:(i+1)*mov_max]))

figure(figsize=(25, 4))
plt.plot(range(graph_len), red_mov_max, 'r')
plt.title('Max Quantity of Red Salamanders every ' + str(mov_max) + ' trials')
Text(0.5, 1.0, 'Max Quantity of Red Salamanders every 4000 trials')

png

We observe that even over 1 million trials, the maximum number of Red salamanders never reaches 29. This suggests that whilst 29R is a possibility, it is highly unlikely to occur through the random sampling used.

Frequency of Red count

# Count frequency of Reds quantities over the trials
import seaborn as sns

figure(figsize=(18, 7))
sns.set_style('darkgrid')
sns.histplot(r_vals, color='r')
plt.title('Histogram of Total Quantity of Red Salamanders')
Text(0.5, 1.0, 'Histogram of Total Quantity of Red Salamanders')

png

We observe that the histogram shows a bell-like curve of distribution. As may be expected, the modal number of Reds is 10, or 1/3 of the total population. This reflects that with more Reds present in the population, there is a higher probability of a Red being selected and therefore the number of Reds being reduced. The opposite can be observed below this level, and a similar graph would be expected for Blues and Greens.
We can see that the graph tails off drastically above 20R - if we were to assume that the number of Reds is approximately normally distributed, we could estimate the probability of getting the maximum number of Reds (29).

from scipy.stats import norm
mean = np.mean(r_vals)
std = np.std(r_vals)

norm.pdf(29, loc=mean, scale=std)
4.750575739333807e-12

This result suggests that, as a rough figure, even if we simulated 210 billion meetings, there would still be about a 37% chance (1/$e$) we would not reach the maximum of 29 Reds at any point!

NB: This is only if assuming a normal distribution, which the bounded data does not strictly fit.

Optimising the algorithm

Initially, we used a random choice of 2 salamanders at each meeting. However, it may be possible to optimise this process to reach 29R far quicker. If we only allow for meetings that increase the number of Reds, i.e. apply a gradient descent optimisation, we should reach our target in far fewer iterations.

# Reset population to the original starting point
pop = ['R']*15 + ['B']*7 + ['G']*8
pop = np.array(pop) # Convert to numpy array

# Set max number of iterations to 1000
iters = 1000

r_vals = []
for i in tqdm(range(iters)):
    # Simulate a meeting
    meeting(gd = True) # Set `gd = True` for gradient descent
    # Save resulting population state
    counter = Counter(pop)
    r_vals.append(counter['R'])
    # Stop if 29R is reached
    if counter['R'] == 29: break
  0%|          | 0/1000 [00:00
# Show how the number of reds changes over trials
figure(figsize=(18, 7))
plt.plot(range(len(r_vals)), r_vals, 'r')
plt.title('Total Quantity of Red Salamanders (Optimised Algorithm)')
Text(0.5, 1.0, 'Total Quantity of Red Salamanders (Optimised Algorithm)')

png

We can see that with the optimised algorithm, the maximum number of possible Reds, 29, was reached in under 1000 iterations.

Owner
Faisal Jina
- Data Science - Healthcare - Business - https://faisaljina.github.io
Faisal Jina
A domonic-like wrapper around selectolax

A domonic-like wrapper around selectolax

byteface 3 Jun 23, 2022
Manjaro CN Repository

Manjaro CN Repository Automatically built packages based on archlinuxcn/repo and manjarocn/docker. Install Add manjarocn to /etc/pacman.conf: Please m

Manjaro CN 28 Jun 26, 2022
Aerospace utilities: flight conditions package, standard atmosphere model, and more.

Aerospace Utilities About Module that contains commonly-used aerospace utilities for problem solving. Flight Condition: input altitude to compute comm

1 Jan 03, 2022
Paxos in Python, tested with Jepsen

Python implementation of Multi-Paxos with a stable leader and reconfiguration, roughly following "Paxos Made Moderately Complex". Run python3 paxos/st

A. Jesse Jiryu Davis 25 Dec 15, 2022
Projects using the Tkinter module in Python!

Tkinter projects This repository includes some Tkinter projects made by me. All of these are simple to understand. I create apps with good functionali

Amey 0 Sep 24, 2021
A turtlebot auto controller allows robot to autonomously explore environment.

A turtlebot auto controller allows robot to autonomously explore environment.

Yuliang Zhong 1 Nov 10, 2021
An open-source Python project series where beginners can contribute and practice coding.

Python Mini Projects A collection of easy Python small projects to help you improve your programming skills. Table Of Contents Aim Of The Project Cont

Leah Nguyen 491 Jan 04, 2023
A compiler for ARM, X86, MSP430, xtensa and more implemented in pure Python

A compiler for ARM, X86, MSP430, xtensa and more implemented in pure Python

Windel Bouwman 277 Dec 26, 2022
Example applications, dashboards, scripts, notebooks, and other utilities built using Polygon.io

Polygon.io Examples Example applications, dashboards, scripts, notebooks, and other utilities built using Polygon.io. Examples Preview Name Type Langu

Tim Paine 4 Jun 01, 2022
This is a Poetry plugin that will make it possible to build projects using custom TOML files

Poetry Multiproject Plugin This is a Poetry plugin that will make it possible to build projects using custom TOML files. This is especially useful whe

David Vujic 69 Dec 25, 2022
Snek-test - An operating system kernel made in python and assembly

pythonOS An operating system kernel made in python and assembly Wait what? It us

TechStudent10 2 Jan 25, 2022
python's memory-saving dictionary data structure

ConstDict python代替的Dict数据结构 若字典不会增加字段,只读/原字段修改 使用ConstDict可节省内存 Dict()内存主要消耗的地方: 1、Dict扩容机制,预留内存空间 2、Dict也是一个对象,内部会动态维护__dict__,增加slot类属性可以节省内容 节省内存大小

Grenter 1 Nov 03, 2021
Find Transposon Element insertions using long reads (nanopore), by alignment directly. (minimap2)

find_te_ins find_te_ins is designed to find Transposon Element (TE) insertions using long reads (nanopore), by alignment directly. (minimap2) Install

Ming Wang 1 Feb 09, 2022
适用于HoshinoBot下的雀魂插件。可进行近期对局查询、查询个人数据等功能,更多功能正在扩展

Majsoul_bot This is a Majsoul plugin for HoshinoBot 这是一个HoshinoBot的雀魂相关插件 本项目目前正在扩展,后续会扩展更多功能,敬请期待 前言 项目地址:https://github.com/DaiShengSheng/Majsoul_bo

黛笙笙 33 Dec 14, 2022
Python language from the beginning.

Python For Beginners Python Programming Language ♦️ Python is a very powerful and user friendly programming language. ❄️ ♦️ There are some basic sytax

Randula Yashasmith Mawaththa 6 Sep 18, 2022
Automated Content Feed Curator

Gathers posts from content feeds, filters, formats, delivers to you.

Alper S. Soylu 2 Jan 22, 2022
Objetivo: de forma colaborativa pasar de nodos de Dynamo a Python.

ITTI_Ed01_De-nodos-a-python ITTI. EXPERT TRAINING EN AUTOMATIZACIÓN DE PROCESOS BIM: OFFICIAL DE AUTODESK. Edición 1 Enlace al Master Enunciado: Traba

1 Jun 06, 2022
Experimental Brawl Stars v36.218 server emulator written in Python.

Brawl Stars v36 Experimental Brawl Stars v36.218 server emulator written in Python. Requirements: Python 3.7 or higher colorama Running the server In

8 Oct 31, 2021
A cheat sheet for streamlit

Streamlit Cheat Sheet App to summarise streamlit docs v1.0.0 There is also an accompanying png and pdf version https://github.com/daniellewisDL/stream

Daniel Lewis 221 Jan 04, 2023
Script to change official Kali repository to mirrors

Script to change official Kali repository to mirrors. This helps increase packages update and downloading for some user.

Vineet Bhavsar 2 Nov 29, 2021