Dataset and baseline code for the VocalSound dataset (ICASSP2022).

Overview

VocalSound: A Dataset for Improving Human Vocal Sounds Recognition

Introduction

VocalSound Poster

VocalSound is a free dataset consisting of 21,024 crowdsourced recordings of laughter, sighs, coughs, throat clearing, sneezes, and sniffs from 3,365 unique subjects. The VocalSound dataset also contains meta information such as speaker age, gender, native language, country, and health condition.

This repository contains the official code of the data preparation and baseline experiment in the ICASSP paper VocalSound: A Dataset for Improving Human Vocal Sounds Recognition (Yuan Gong, Jin Yu, and James Glass; MIT & Signify). Specifically, we provide an extremely simple one-click Google Colab script Open In Colab for the baseline experiment, no GPU / local data downloading is needed.

The dataset is ideal for:

  • Build vocal sound recognizer.
  • Research on removing model bias on various speaker groups.
  • Evaluate pretrained models (e.g., those trained with AudioSet) on vocal sound classification to check their generalization ability.
  • Combine with existing large-scale general audio dataset to improve the vocal sound recognition performance.

Citing

Please cite our paper(s) if you find the VocalSound dataset and code useful. The first paper proposes introduces the VocalSound dataset and the second paper describes the training pipeline and model we used for the baseline experiment.

@INPROCEEDINGS{gong_vocalsound,
  author={Gong, Yuan and Yu, Jin and Glass, James},
  booktitle={ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, 
  title={Vocalsound: A Dataset for Improving Human Vocal Sounds Recognition}, 
  year={2022},
  pages={151-155},
  doi={10.1109/ICASSP43922.2022.9746828}}
@ARTICLE{gong_psla, 
    author={Gong, Yuan and Chung, Yu-An and Glass, James},
    title={PSLA: Improving Audio Tagging with Pretraining, Sampling, Labeling, and Aggregation}, 
    journal={IEEE/ACM Transactions on Audio, Speech, and Language Processing},  
    year={2021}, 
    doi={10.1109/TASLP.2021.3120633}
}

Download VocalSound

The VocalSound dataset can be downloaded as a single .zip file:

Sample Recordings (Listen to it without downloading)

VocalSound 44.1kHz Version (4.5 GB)

VocalSound 16kHz Version (1.7 GB, used in our baseline experiment)

(Mirror Links) 腾讯微云下载链接: 试听24个样本16kHz版本44.1kHz版本

If you plan to reproduce our baseline experiments using our Google Colab script, you do NOT need to download it manually, our script will download and process the 16kHz version automatically.

Creative Commons License
The VocalSound dataset is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Dataset Details

data
├──readme.txt
├──class_labels_indices_vs.csv # include label code and name information
├──audio_16k
│  ├──f0003_0_cough.wav # female speaker, id=0003, 0=first collection (most spks only record once, but there are exceptions), cough
│  ├──f0003_0_laughter.wav
│  ├──f0003_0_sigh.wav
│  ├──f0003_0_sneeze.wav
│  ├──f0003_0_sniff.wav
│  ├──f0003_0_throatclearing.wav
│  ├──f0004_0_cough.wav # data from another female speaker 0004
│   ... (21024 files in total)
│   
├──audio_44k
│    # same recordings with those in data/data_16k, but are no downsampled
│   ├──f0003_0_cough.wav
│    ... (21024 files in total)
│
├──datafiles  # json datafiles that we use in our baseline experiment, you can ignore it if you don't use our training pipeline
│  ├──all.json  # all data
│  ├──te.json  # test data
│  ├──tr.json  # training data
│  ├──val.json  # validation data
│  └──subtest # subset of the test set, for fine-grained evaluation
│     ├──te_age1.json  # age [18-25]
│     ├──te_age2.json  # age [26-48]
│     ├──te_age3.json  # age [49-80]
│     ├──te_female.json
│     └──te_male.json
│
└──meta  # Meta information of the speakers [spk_id, gender, age, country, native language, health condition (no=no problem)]
   ├──all_meta.json  # all data
   ├──te_meta.json  # test data
   ├──tr_meta.json  # training data
   └──val_meta.json  # validation data

Baseline Experiment

Option 1. One-Click Google Colab Experiment Open In Colab

We provide an extremely simple one-click Google Colab script for the baseline experiment.

What you need:

  • A free google account with Google Drive free space > 5Gb
    • A (paid) Google Colab Pro plan could speed up training, but is not necessary. Free version can run the script, just a bit slower.

What you don't need:

  • Download VocalSound manually (The Colab script download it to your Google Drive automatically)
  • GPU or any other hardware (Google Colab provides free GPUs)
  • Any enviroment setting and package installation (Google Colab provides a ready-to-use environment)
  • A specific operating system (You only need a web browser, e.g., Chrome)

Please Note

  • This script is slightly different with our local code, but the performance is not impacted.
  • Free Google Colab might be slow and unstable. In our test, it takes ~5 minutes to train the model for one epoch with a free Colab account.

To run the baseline experiment

  • Make sure your Google Drive is mounted. You don't need to do it by yourself, but Google Colab will ask permission to acess your Google Drive when you run the script, please allow it if you want to use Google Drive.
  • Make sure GPU is enabled for Colab. To do so, go to the top menu > Edit > Notebook settings and select GPU as Hardware accelerator.
  • Run the script. Just press Ctrl+F9 or go to runtime menu on top and click "run all" option. That's it.

Option 2. Run Experiment Locally

We also provide a recipe for local experiments.

Compared with the Google Colab online script, it has following advantages:

  • It can be faster and more stable than online Google Colab (free version) if you have fast GPUs.
  • It is basically the original code we used for our paper, so it should reproduce the exact numbers in the paper.

Step 1. Clone or download this repository and set it as the working directory, create a virtual environment and install the dependencies.

cd vocalsound/ 
python3 -m venv venv-vs
source venv-vs/bin/activate
pip install -r requirements.txt 

Step 2. Download the VocalSound dataset and process it.

cd data/
wget https://www.dropbox.com/s/c5ace70qh1vbyzb/vs_release_16k.zip?dl=0 -O vs_release_16k.zip
unzip vs_release_16k.zip
cd ../src
python prep_data.py

# you can provide a --data_dir augment if you download the data somewhere else
# python prep_data.py --data_dir absolute_path/data

Step 3. Run the baseline experiment

chmod 777 run.sh
./run.sh

# or slurm user
#sbatch run.sh

We test both options before this release, you should get similar accuracies.

Accuracy (%) Colab Script Open In Colab Local Script ICASSP Paper
Validation Set 91.1 90.2 90.1±0.2
All Test Set 91.6 90.6 90.5±0.2
Test Age 18-25 93.4 92.3 91.5±0.3
Test Age 26-48 90.8 90.0 90.1±0.2
Test Age 49-80 92.2 90.2 90.9±1.6
Test Male 89.8 89.6 89.2±0.5
Test Female 93.4 91.6 91.9±0.1
Model Implementation torchvision EfficientNet PSLA EfficientNet PSLA EfficientNet
Batch Size 80 100 100
GPU Google Colab Free 4X Titan 4X Titan
Training Time (30 Epochs) ~2.5 Hours ~1 Hour ~1 Hour

Contact

If you have a question, please bring up an issue (preferred) or send me an email [email protected].

Owner
Yuan Gong
Postdoc, MIT CSAIL
Yuan Gong
kapre: Keras Audio Preprocessors

Kapre Keras Audio Preprocessors - compute STFT, ISTFT, Melspectrogram, and others on GPU real-time. Tested on Python 3.6 and 3.7 Why Kapre? vs. Pre-co

Keunwoo Choi 867 Dec 29, 2022
A Python 3 script for capturing and recording a SDR stream to a WAV file (or serving it to a HTTP audio stream).

rfsoapyfile A Python 3 script for capturing and recording a SDR stream to a WAV file (or serving it to a HTTP audio stream). The script is threaded fo

4 Dec 19, 2022
Gateware for the Terasic/Arrow DECA board, to become a USB2 high speed audio interface

DECA USB Audio Interface DECA based USB 2.0 High Speed audio interface Status / current limitations enumerates as class compliant audio device on Linu

Hans Baier 16 Mar 21, 2022
Anki vector Music ❤ is the best and only Telegram VC player with playlists, Multi Playback, Channel play and more

Anki Vector Music 🎵 A bot that can play music on Telegram Group and Channel Voice Chats Available on telegram as @Anki Vector Music Features 🔥 Thumb

Damantha Jasinghe 12 Nov 12, 2022
Python tools for the corpus analysis of popular music.

CATCHY Corpus Analysis Tools for Computational Hook discovery Python tools for the corpus analysis of popular music recordings. The tools can be used

Jan VB 20 Aug 20, 2022
Voice helper on russian

Voice helper on russian

KreO 1 Jun 30, 2022
Desktop music recognition application for windows

MusicRecognizer Music recognition application for windows You can choose from which of the devices the recording will be made. If you choose speakers,

Nikita Merzlyakov 28 Dec 13, 2022
A python program for visualizing MIDI files, and displaying them in a spiral layout

SpiralMusic_python A python program for visualizing MIDI files, and displaying them in a spiral layout For a hardware version using Teensy & LED displ

Gavin 6 Nov 23, 2022
Mina - A Telegram Music Bot 5 mandatory Assistant written in Python using Pyrogram and Py-Tgcalls

Mina - A Telegram Music Bot 5 mandatory Assistant written in Python using Pyrogram and Py-Tgcalls

3 Feb 07, 2022
A python program to cut longer MP3 files (i.e. recordings of several songs) into the individual tracks.

I'm writing a python script to cut longer MP3 files (i.e. recordings of several songs) into the individual tracks called ReCut. So far there are two

Dönerspiess 1 Oct 27, 2021
Gammatone-based spectrograms, using gammatone filterbanks or Fourier transform weightings.

Gammatone Filterbank Toolkit Utilities for analysing sound using perceptual models of human hearing. Jason Heeris, 2013 Summary This is a port of Malc

Jason Heeris 188 Dec 14, 2022
A Quick Music Player Made Fully in Python

Quick Music Player Made Fully In Python. Pure Python, cross platform, single function module with no dependencies for playing sounds. Installation & S

1 Dec 24, 2021
Pianote - An application that helps musicians practice piano ear training

Pianote Pianote is an application that helps musicians practice piano ear traini

3 Aug 17, 2022
A Python port and library-fication of the midicsv tool by John Walker.

A Python port and library-fication of the midicsv tool by John Walker. If you need to convert MIDI files to human-readable text files and back, this is the library for you.

Tim Wedde 52 Dec 29, 2022
Audio spatialization over WebRTC and JACK Audio Connection Kit

Audio spatialization over WebRTC Spatify provides a framework for building multichannel installations using WebRTC.

Bruno Gola 34 Jun 29, 2022
Oliva music bot help to play vc music

OLIVA V2 🎵 Requirements 📝 FFmpeg NodeJS nodesource.com Python 3.7+ PyTgCalls Commands 🛠 For all in group /play - reply to youtube url or song file

SOUL々H҉A҉C҉K҉E҉R҉ 2 Oct 22, 2021
MusicBrainz Picard

MusicBrainz Picard MusicBrainz Picard is a cross-platform (Linux/Mac OS X/Windows) application written in Python and is the official MusicBrainz tagge

MetaBrainz Foundation 3k Dec 31, 2022
extract unpack asset file (form unreal engine 4 pak) with extenstion *.uexp which contain awb/acb (cri/cpk like) sound or music resource

Uexp2Awb extract unpack asset file (form unreal engine 4 pak) with extenstion .uexp which contain awb/acb (cri/cpk like) sound or music resource. i ju

max 6 Jun 22, 2022
Accompanying code for our paper "Point Cloud Audio Processing"

Point Cloud Audio Processing Krishna Subramani1, Paris Smaragdis1 1UIUC Paper For the necessary libraries/prerequisites, please use conda/anaconda to

Krishna Subramani 17 Nov 17, 2022
FPGA based USB 2.0 high speed audio interface featuring multiple optical ADAT inputs and outputs

ADAT USB Audio Interface FPGA based USB 2.0 High Speed audio interface featuring multiple optical ADAT inputs and outputs Status / current limitations

Hans Baier 78 Dec 31, 2022