CRC Reverse Engineering Tool in Python

Overview

CRC Beagle

CRC Beagle is a tool for reverse engineering CRCs. It is designed for commnication protocols where you often have several messages of the same length. This allows CRC Beagle to use the CRC Differential Technique described by Gregory Ewing described in Reverse-Engineering a CRC Algorithm

The advantage of this technique is it allows recovery of an "effective equivalent" CRC even in cases where the algorithm uses non-standard parameters for XOR-in or XOR-out (a common obfuscation technique).

The CRC RevEng tool by Greg Cook is a more mature tool, I haven't implemented as much. I started CRC Beagle to (a) use Python which I find much easier to modify, and (b) when CRC RevEng failed to recover a CRC for a device I was looking at, and it was difficult to understand why.

CRC Beagle has some other handy features, such as giving you the code you need to create valid CRCs with a copy-paste. It also checks inputs when running on 8-bit CRCs to see if it's just a simple checksum and not a real CRC.

Hopefully you find CRC Beagle useful, but this is hardly a novel creation, so the credit goes to those who built up the foundation.

Using CRC Beagle

The basic usage is shown in the file demo.py:

from crcbeagle import crcbeagle

crcb = crcbeagle.CRCBeagle()

crcb.search([[165,  16,  2,  7,  85,  163,  209,  114,  21,  131,  143,  144,  52,  187,  183,  142,  180,  39,  169,  76],
        [165,  16,  2,  7,  140,  39,  242,  202,  181,  209,  220,  248,  156,  112,  66,  128,  236,  187,  35,  176],
        [165,  16,  2,  7,  113,  105,  30,  118,  164,  96,  43,  198,  84,  170,  123,  76,  107,  225,  133,  194]],
        
       [[253,  14],
        [90,  38],
        [248,  236]]
)

This generates an output like this:

Input parameters:
    16-bit CRC size
    3 total messages, with:
       3 messages with 20 byte payload
NOTE: Output parameters will be specific to this message size only. Pass different length messages if possible.

Working on messages of 20 length:
  Found single likely solution for differences of len=20, yah!
  Found single XOR-out value for len = 20: 0xCACA
********** example usage *************
import struct
from crccheck.crc import Crc16Base
crc = Crc16Base
def my_crc(message):
  crc._poly = 0x1021
  crc._reflect_input = False
  crc._reflect_output = False
  crc._initvalue = 0x0
  crc._xor_output = 0xCACA
  output_int = crc.calc(message)
  output_bytes = struct.pack("<H", output_int)
  output_list = list(output_bytes)
  return (output_int, output_bytes, output_list)

m = [165, 16, 2, 7, 85, 163, 209, 114, 21, 131, 143, 144, 52, 187, 183, 142, 180, 39, 169, 76]
output = my_crc(m)
print(hex(output[0]))
**************************************
If you have multiple message lengths this solution may be valid for this only.

Important Limitations

The CRC differential technique packs all of the "constant bytes" into the XOR-out parameters.

Constants that occur at the start of the CRC are transformed by the CRC operation. This transformation depends on the number of cyclic shifts - that means the constant changes for different lengths of messages, since the number of cyclic shifts changes every time you 'add' a byte to the CRC.

If you can find the 'actual' XOR-in settings, or how many bytes the operation takes, you will have a more generic function.

However in practice I find that many communication protocols only transmit certain length messages. Thus having different XOR-out values for each message length isn't a major problem for the purpose of interoperating with the original system.

This tool doesn't try to be too clever and just spits out settings for each message length you gave it.

How it Works

While you can just brute-force CRC parameters with a given message, this has some complexities in practice. You may not know what exactly is covered by the CRC - for example most protocols have some 'start of frame' characters. They may also add padding to the message before being passed to the CRC algorhtm.

As described by Gregory Ewing described in Reverse-Engineering a CRC Algorithm, you can take advantage of the fact CRC can be broken down into several components. A typical CRC operation of message m1 could be considered as:

CRC(m1) = CRC(fixedin) ^ CRC(m1') ^ fixedout

Where m1' is a variable portion of m1. Some of the fixedin comes from the CRC algorithm, some of it could come from the CRC of fixed parameters.

This means if you take the XOR of the CRC portion of two messages:

CRC(m1) ^ CRC(m2) = [CRC(fixedin) ^ CRC(m1') ^ fixedout] ^ [CRC(fixedin) ^ CRC(m2') ^ fixedout]

You cancel the common terms, and are left with:

CRC(m1) ^ CRC(m2) = CRC(m1') ^ CRC(m2')

The advantage of this is that we have removed the fixed portion. This is much easier to brute-force since we now only have to worry about what the polynomial of CRC() was (and a few other issues such as bit/byte ordering).

We can take two messages which we have a known CRC for, xor the messages together, and then we can try to simply find the CRC polynomial (ignoring the input & output settings). Any constant terms we can ignore, whether they come from the CRC parameter or the CRC usage (such as including a constant header byte).

With the polynomial known, all the fixed input data CRC(fixedin) becomes a constant we can roll into a single variable. Note that this constant changes with different message lengths, but you can still achieve interoperability in most cases.

Owner
Colin O'Flynn
Colin is a huge nerd.
Colin O'Flynn
Hospitality app for ERPNext to manage hotels & restaurants.

Hospitality ERPNext Hospitality module is designed to handle workflows for Hotels and Restaurants. Manage Restaurants The Restaurant module in ERPNext

Frappe 19 Dec 26, 2022
The next generation Canto RSS daemon

Canto Daemon This is the RSS backend for Canto clients. Canto-curses is the default client at: http://github.com/themoken/canto-curses Requirements De

Jack Miller 155 Dec 28, 2022
Programming labs for 6.S060 (Foundations of Computer Security).

6.S060 Labs This git repository contains the code for the labs in 6.S060. In these labs, you will add a series of security features to a photo-sharing

MIT PDOS 10 Nov 02, 2022
A simple way to read and write LAPS passwords from linux.

A simple way to read and write LAPS passwords from linux. This script is a python setter/getter for property ms-Mcs-AdmPwd used by LAPS inspired by @s

Podalirius 36 Dec 09, 2022
A comparison of mesh generators.

This repository creates meshes of the same domains with multiple mesh generators and compares the results.

Nico Schlömer 29 Dec 12, 2022
Rick Astley Language is a rick roll oriented, dynamic, strong, esoteric programming language.

Rick Roll Language / Rick Astley Language A rick roll oriented, dynamic, strong, esoteric programming language. Prolegomenon The reasons that I made t

Rick Roll Programming Language 658 Jan 09, 2023
Some shitty programs just to brush up on my understanding of binary conversions.

Binary Converters Some shitty programs just to brush up on my understanding of binary conversions. Supported conversions formats = "unsigned-binary" |

Tim 2 Jan 09, 2022
【幼盾】个性化图片徽章服务!

【幼盾】个性化图片徽章服务! 你对方形的徽章感到无聊了吗?想要定制属于自己的开源项目徽章了吗? 快来使用unv-shield吧! unv-shield提供包含自定义图片的徽章服务,可以让你的项目主页更加个性化!

黄巍 130 Dec 23, 2022
This repository contains the exercices for the robotics class at Supaero, 2022.

Supaero robotics, 2022 This repository contains the exercices for the robotics class at Supaero, 2022. The exercices are organized by notebook. Each n

Gepetto team, LAAS-CNRS 5 Aug 01, 2022
A Python wrapper API for operating and working with the Neo4j Graph Data Science (GDS) library

gdsclient NOTE: This is a work in progress and many GDS features are known to be missing or not working properly. This repo hosts the sources for gdsc

Neo4j 100 Dec 20, 2022
In this project , I play with the YouTube data API and extract trending videos in Nigeria on a particular day

YouTubeTrendingVideosAnalysis In this project , I played with the YouTube data API and extracted trending videos in Nigeria on a particular day. This

1 Jan 11, 2022
World's best free and open source ERP.

World's best free and open source ERP.

Frappe 12.5k Jan 07, 2023
Demo scripts for the Kubernetes Security Webinar

Kubernetes Security Webinar [in Russian] YouTube video (October 13, 2021) Authors: Artem Yushkovsky (LinkedIn, GitHub) Maxim Mosharov @ Whitespots.io

Slurm 34 Dec 06, 2022
Incident Response Process and Playbooks | Goal: Playbooks to be Mapped to MITRE Attack Techniques

PURPOSE OF PROJECT That this project will be created by the SOC/Incident Response Community Develop a Catalog of Incident Response Playbook for every

Austin Songer 987 Jan 02, 2023
Python wrapper around Apple App Store Api

App Store Connect Api This is a Python wrapper around the Apple App Store Api : https://developer.apple.com/documentation/appstoreconnectapi So far, i

123 Jan 06, 2023
Github dorking tool

gh-dork Supply a list of dorks and, optionally, one of the following: a user (-u) a file with a list of users (-uf) an organization (-org) a file with

Molly White 119 Dec 21, 2022
Implementation of the Folders📂 esoteric programming language, a language with no code and just folders.

Folders.py Folders is an esoteric programming language, created by Daniel Temkin in 2015, which encodes the program entirely into the directory struct

Sina Khalili 425 Dec 17, 2022
It is convenient to quickly import Python packages from the network.

It is convenient to quickly import Python packages from the network.

zmaplex 1 Jan 18, 2022
Automatically unpin old messages so you can always pin more!

PinRotate Automatically unpin old messages so you can always pin more! Installation You will need to install poetry to run this bot locally for develo

3 Sep 18, 2022
A basic tool to generate Hydrogen drum machine kits.

Generate Hydrogen Kit A basic tool to generate drumkit.xml files for Hydrogen drum machine. Saves a bit of time when making kits. Supply it with a nam

Luna Langton 2 Nov 28, 2021