CRC Reverse Engineering Tool in Python

Overview

CRC Beagle

CRC Beagle is a tool for reverse engineering CRCs. It is designed for commnication protocols where you often have several messages of the same length. This allows CRC Beagle to use the CRC Differential Technique described by Gregory Ewing described in Reverse-Engineering a CRC Algorithm

The advantage of this technique is it allows recovery of an "effective equivalent" CRC even in cases where the algorithm uses non-standard parameters for XOR-in or XOR-out (a common obfuscation technique).

The CRC RevEng tool by Greg Cook is a more mature tool, I haven't implemented as much. I started CRC Beagle to (a) use Python which I find much easier to modify, and (b) when CRC RevEng failed to recover a CRC for a device I was looking at, and it was difficult to understand why.

CRC Beagle has some other handy features, such as giving you the code you need to create valid CRCs with a copy-paste. It also checks inputs when running on 8-bit CRCs to see if it's just a simple checksum and not a real CRC.

Hopefully you find CRC Beagle useful, but this is hardly a novel creation, so the credit goes to those who built up the foundation.

Using CRC Beagle

The basic usage is shown in the file demo.py:

from crcbeagle import crcbeagle

crcb = crcbeagle.CRCBeagle()

crcb.search([[165,  16,  2,  7,  85,  163,  209,  114,  21,  131,  143,  144,  52,  187,  183,  142,  180,  39,  169,  76],
        [165,  16,  2,  7,  140,  39,  242,  202,  181,  209,  220,  248,  156,  112,  66,  128,  236,  187,  35,  176],
        [165,  16,  2,  7,  113,  105,  30,  118,  164,  96,  43,  198,  84,  170,  123,  76,  107,  225,  133,  194]],
        
       [[253,  14],
        [90,  38],
        [248,  236]]
)

This generates an output like this:

Input parameters:
    16-bit CRC size
    3 total messages, with:
       3 messages with 20 byte payload
NOTE: Output parameters will be specific to this message size only. Pass different length messages if possible.

Working on messages of 20 length:
  Found single likely solution for differences of len=20, yah!
  Found single XOR-out value for len = 20: 0xCACA
********** example usage *************
import struct
from crccheck.crc import Crc16Base
crc = Crc16Base
def my_crc(message):
  crc._poly = 0x1021
  crc._reflect_input = False
  crc._reflect_output = False
  crc._initvalue = 0x0
  crc._xor_output = 0xCACA
  output_int = crc.calc(message)
  output_bytes = struct.pack("<H", output_int)
  output_list = list(output_bytes)
  return (output_int, output_bytes, output_list)

m = [165, 16, 2, 7, 85, 163, 209, 114, 21, 131, 143, 144, 52, 187, 183, 142, 180, 39, 169, 76]
output = my_crc(m)
print(hex(output[0]))
**************************************
If you have multiple message lengths this solution may be valid for this only.

Important Limitations

The CRC differential technique packs all of the "constant bytes" into the XOR-out parameters.

Constants that occur at the start of the CRC are transformed by the CRC operation. This transformation depends on the number of cyclic shifts - that means the constant changes for different lengths of messages, since the number of cyclic shifts changes every time you 'add' a byte to the CRC.

If you can find the 'actual' XOR-in settings, or how many bytes the operation takes, you will have a more generic function.

However in practice I find that many communication protocols only transmit certain length messages. Thus having different XOR-out values for each message length isn't a major problem for the purpose of interoperating with the original system.

This tool doesn't try to be too clever and just spits out settings for each message length you gave it.

How it Works

While you can just brute-force CRC parameters with a given message, this has some complexities in practice. You may not know what exactly is covered by the CRC - for example most protocols have some 'start of frame' characters. They may also add padding to the message before being passed to the CRC algorhtm.

As described by Gregory Ewing described in Reverse-Engineering a CRC Algorithm, you can take advantage of the fact CRC can be broken down into several components. A typical CRC operation of message m1 could be considered as:

CRC(m1) = CRC(fixedin) ^ CRC(m1') ^ fixedout

Where m1' is a variable portion of m1. Some of the fixedin comes from the CRC algorithm, some of it could come from the CRC of fixed parameters.

This means if you take the XOR of the CRC portion of two messages:

CRC(m1) ^ CRC(m2) = [CRC(fixedin) ^ CRC(m1') ^ fixedout] ^ [CRC(fixedin) ^ CRC(m2') ^ fixedout]

You cancel the common terms, and are left with:

CRC(m1) ^ CRC(m2) = CRC(m1') ^ CRC(m2')

The advantage of this is that we have removed the fixed portion. This is much easier to brute-force since we now only have to worry about what the polynomial of CRC() was (and a few other issues such as bit/byte ordering).

We can take two messages which we have a known CRC for, xor the messages together, and then we can try to simply find the CRC polynomial (ignoring the input & output settings). Any constant terms we can ignore, whether they come from the CRC parameter or the CRC usage (such as including a constant header byte).

With the polynomial known, all the fixed input data CRC(fixedin) becomes a constant we can roll into a single variable. Note that this constant changes with different message lengths, but you can still achieve interoperability in most cases.

Owner
Colin O'Flynn
Colin is a huge nerd.
Colin O'Flynn
Job Guy Backend

جاب‌گای چیست؟ اونجا وضعیت چطوریه؟ یه سوال به همین کلیت و ابهام معمولا وقتی برای یه شرکت رزومه می‌فرستیم این سوال کلی و بزرگ برای همه پیش میاد.اونجا وض

Jobguy.work 217 Dec 25, 2022
Possible solutions to Wordscapes, a mobile game for the android operating system, downloadable from the play store

Possible solutions to Wordscapes, a mobile game for the android operating system, downloadable from the play store

Clifford Onyonka 2 Feb 23, 2022
MODeflattener deobfuscates control flow flattened functions obfuscated by OLLVM using Miasm.

MODeflattener deobfuscates control flow flattened functions obfuscated by OLLVM using Miasm.

Suraj Malhotra 138 Jan 07, 2023
Basit bir cc generator'ü.

Basit bir cc generator'ü. Setup What To Do; Python Installation We install python from CLICK Generator Board After installing the file and python, we

Lâving 7 Jan 09, 2022
Script em python, utilizando PySimpleGUI, para a geração de arquivo txt a ser importado no sistema de Bilhetagem Eletrônica da RioCard, no Estado do Rio de Janeiro.

pedido-vt-riocard Script em python, utilizando PySimpleGUI, para a geração de arquivo txt a ser importado no sistema de Bilhetagem Eletrônica da RioCa

Carlos Bruno Gomes 1 Dec 01, 2021
Catalogue CRUD Application

This Python program creates a relational SQL database hosted on the Snowflake platform, then opens a CRUD GUI to manipulate and view the data. In this application, it is used as a book catalogue. CUR

0 Dec 13, 2022
A repository containing an introduction to Panel made to be support videos and talks.

👍 Awesome Panel - Introduction to Panel THIS REPO IS WORK IN PROGRESS. PRE-ALPHA Panel is a very powerful framework for exploratory data analysis and

Marc Skov Madsen 51 Nov 17, 2022
This tool helps you to reverse any regex and gives you the opposite/allowed Letters,numerics and symbols.

Regex-Reverser This tool helps you to reverse any regex and gives you the opposite/allowed Letters,numerics and symbols. Screenshots Usage/Examples py

x19 0 Jun 02, 2022
Dump Data from FTDI Serial Port to Binary File on MacOS

Dump Data from FTDI Serial Port to Binary File on MacOS

pandy song 1 Nov 24, 2021
FBChecker Account using python , package requests and web old facebook

fbcek FBChecker Account using python , package requests and web old facebook using python 3.x apt upgrade -y apt update -y pkg install bash -y pkg ins

XnuxersXploitXen 5 Dec 24, 2022
Daily knowledge pills to get better in Python.

Python daily pills Daily knowledge pills to get better Python code. Why Does your Python code suffers of any of this symptoms? Incorrect Indentation I

Jeferson Vaz dos Santos 35 Sep 19, 2022
A minimalist starknet amm adapted from StarkWare's amm.

viscus • A minimalist starknet amm adapted from StarkWare's amm. Directory Structure contracts

Alucard 4 Dec 27, 2021
Reference management solution using Python and Notion.

notion-scholar Reference management solution using Python and Notion. The main idea of this app is to allow to furnish a Notion database using a BibTe

Thomas Hirtz 69 Dec 21, 2022
Learning objective: Use React.js, Axios, and CSS to build a responsive YouTube clone app

Learning objective: Use React.js, Axios, and CSS to build a responsive YouTube clone app to search for YouTube videos, channels, playlists, and live events via wrapper around Google YouTube API.

Dillon 0 May 03, 2022
Delayed iteration for polling and retries.

Does Python need yet another retry / poll library? It needs at least one that isn't coupled to decorators and functions. Decorators prevent the caller

A. Coady 22 Dec 29, 2022
Timetable scripts for python

Timetable Scripts timetable_to_json: https://beta.elektronplus.pl/timetable classes_taught_by_teacher: a.adam (aa) ['1Tc', '1Td', '3Te', '3Ti', '4Tf',

Elektron++ 2 Jan 02, 2022
In this repo, I will put all the code related to data science using python libraries like Numpy, Pandas, Matplotlib, Seaborn and many more.

Python-for-DS In this repo, I will put all the code related to data science using python libraries like Numpy, Pandas, Matplotlib, Seaborn and many mo

1 Jan 10, 2022
Lightweight and Modern kernel for VK Bots

This is the kernel for creating VK Bots written in Python 3.9

Yrvijo 4 Nov 21, 2021
Radiosonde Telemetry Decoders

Radiosonde Telemetry Frame Decoders This repository is an attempt to collate the various sources of information on how to decode radiosonde telemetry

Project Horus 3 Jan 04, 2022
Create Arrays (Working with For Loops)

DSA with Python Create Arrays (Working with For Loops) CREATING ARRAYS WITH USER INPUT Array is a collection of items stored at contiguous memory loca

1 Feb 08, 2022