CRC Reverse Engineering Tool in Python

Overview

CRC Beagle

CRC Beagle is a tool for reverse engineering CRCs. It is designed for commnication protocols where you often have several messages of the same length. This allows CRC Beagle to use the CRC Differential Technique described by Gregory Ewing described in Reverse-Engineering a CRC Algorithm

The advantage of this technique is it allows recovery of an "effective equivalent" CRC even in cases where the algorithm uses non-standard parameters for XOR-in or XOR-out (a common obfuscation technique).

The CRC RevEng tool by Greg Cook is a more mature tool, I haven't implemented as much. I started CRC Beagle to (a) use Python which I find much easier to modify, and (b) when CRC RevEng failed to recover a CRC for a device I was looking at, and it was difficult to understand why.

CRC Beagle has some other handy features, such as giving you the code you need to create valid CRCs with a copy-paste. It also checks inputs when running on 8-bit CRCs to see if it's just a simple checksum and not a real CRC.

Hopefully you find CRC Beagle useful, but this is hardly a novel creation, so the credit goes to those who built up the foundation.

Using CRC Beagle

The basic usage is shown in the file demo.py:

from crcbeagle import crcbeagle

crcb = crcbeagle.CRCBeagle()

crcb.search([[165,  16,  2,  7,  85,  163,  209,  114,  21,  131,  143,  144,  52,  187,  183,  142,  180,  39,  169,  76],
        [165,  16,  2,  7,  140,  39,  242,  202,  181,  209,  220,  248,  156,  112,  66,  128,  236,  187,  35,  176],
        [165,  16,  2,  7,  113,  105,  30,  118,  164,  96,  43,  198,  84,  170,  123,  76,  107,  225,  133,  194]],
        
       [[253,  14],
        [90,  38],
        [248,  236]]
)

This generates an output like this:

Input parameters:
    16-bit CRC size
    3 total messages, with:
       3 messages with 20 byte payload
NOTE: Output parameters will be specific to this message size only. Pass different length messages if possible.

Working on messages of 20 length:
  Found single likely solution for differences of len=20, yah!
  Found single XOR-out value for len = 20: 0xCACA
********** example usage *************
import struct
from crccheck.crc import Crc16Base
crc = Crc16Base
def my_crc(message):
  crc._poly = 0x1021
  crc._reflect_input = False
  crc._reflect_output = False
  crc._initvalue = 0x0
  crc._xor_output = 0xCACA
  output_int = crc.calc(message)
  output_bytes = struct.pack("<H", output_int)
  output_list = list(output_bytes)
  return (output_int, output_bytes, output_list)

m = [165, 16, 2, 7, 85, 163, 209, 114, 21, 131, 143, 144, 52, 187, 183, 142, 180, 39, 169, 76]
output = my_crc(m)
print(hex(output[0]))
**************************************
If you have multiple message lengths this solution may be valid for this only.

Important Limitations

The CRC differential technique packs all of the "constant bytes" into the XOR-out parameters.

Constants that occur at the start of the CRC are transformed by the CRC operation. This transformation depends on the number of cyclic shifts - that means the constant changes for different lengths of messages, since the number of cyclic shifts changes every time you 'add' a byte to the CRC.

If you can find the 'actual' XOR-in settings, or how many bytes the operation takes, you will have a more generic function.

However in practice I find that many communication protocols only transmit certain length messages. Thus having different XOR-out values for each message length isn't a major problem for the purpose of interoperating with the original system.

This tool doesn't try to be too clever and just spits out settings for each message length you gave it.

How it Works

While you can just brute-force CRC parameters with a given message, this has some complexities in practice. You may not know what exactly is covered by the CRC - for example most protocols have some 'start of frame' characters. They may also add padding to the message before being passed to the CRC algorhtm.

As described by Gregory Ewing described in Reverse-Engineering a CRC Algorithm, you can take advantage of the fact CRC can be broken down into several components. A typical CRC operation of message m1 could be considered as:

CRC(m1) = CRC(fixedin) ^ CRC(m1') ^ fixedout

Where m1' is a variable portion of m1. Some of the fixedin comes from the CRC algorithm, some of it could come from the CRC of fixed parameters.

This means if you take the XOR of the CRC portion of two messages:

CRC(m1) ^ CRC(m2) = [CRC(fixedin) ^ CRC(m1') ^ fixedout] ^ [CRC(fixedin) ^ CRC(m2') ^ fixedout]

You cancel the common terms, and are left with:

CRC(m1) ^ CRC(m2) = CRC(m1') ^ CRC(m2')

The advantage of this is that we have removed the fixed portion. This is much easier to brute-force since we now only have to worry about what the polynomial of CRC() was (and a few other issues such as bit/byte ordering).

We can take two messages which we have a known CRC for, xor the messages together, and then we can try to simply find the CRC polynomial (ignoring the input & output settings). Any constant terms we can ignore, whether they come from the CRC parameter or the CRC usage (such as including a constant header byte).

With the polynomial known, all the fixed input data CRC(fixedin) becomes a constant we can roll into a single variable. Note that this constant changes with different message lengths, but you can still achieve interoperability in most cases.

Owner
Colin O'Flynn
Colin is a huge nerd.
Colin O'Flynn
Dicionario-git-github - Dictionary created to help train new users of Git and GitHub applications

Dicionário 📕 Dicionário criado com o objetivo de auxiliar no treinamento de nov

Felippe Rafael 1 Feb 07, 2022
Devil - Very Semple Auto Filter V1 Bot

Devil Very Semple Auto Filter V1 Bot

2 Jun 27, 2022
使用clash核心,对服务器进行Netflix解锁批量测试。

注意事项 测速及解锁测试仅供参考,不代表实际使用情况,由于网络情况变化、Netflix封锁及ip更换,测速具有时效性 本项目使用 Python 编写,使用前请完成环境安装 首次运行前请安装pip及相关依赖,也可使用 pip install -r requirements.txt 命令自行安装 Net

11 Dec 07, 2022
Integer sets where all subsets have unique sums

Evil Sums Generation of sets of numbers where all constituents are recoverable from a partial sum.

Charlotte 5 Sep 24, 2022
Set of scripts that schedules employees for shifts throughout the week based on availability, shift times, and shift necessities

Automatic-Scheduler Set of scripts that schedules employees for shifts throughout the week based on availability, shift times, and shift necessities *

Matthew 1 May 01, 2022
A very terrible python-based programming language that uses folders instead of text files

PYFolders by Lewis L. Foster PYFolders is a very terrible python-based programming language that uses folders instead of regular text files. In this r

Lewis L. Foster 5 Jan 08, 2022
Python scripts to interact with Upper Deck ePack online trading card platform

This script should connect to the Upper Deck ePack API using your browser cookies and download a list of your current collection and save it as a CSV.

Adrian Kent 1 Nov 22, 2021
A web interface for a soft serve Git server.

Soft Serve monitor Soft Sevre is a very nice git server. It offers a really nice TUI to browse the repositories on the server. Unfortunately, it does

Maxime Bouillot 5 Apr 26, 2022
Probably the best way to simulate block scopes in Python

This is a package, as it says on the tin, to emulate block scoping in Python, the lack of which being a clever design choice yet sometimes a trouble.

88 Oct 26, 2022
Project aims to map out common user behavior on the computer

User-Behavior-Mapping-Tool Project aims to map out common user behavior on the computer. Most of the code is based on the research by kacos2000 found

trustedsec 136 Dec 23, 2022
Rufus port to linux, writed on Python3

Rufus-for-Linux Rufus port to linux, writed on Python3 Программа будет иметь тот же интерфейс что и оригинал, и тот же функционал. Программа создается

6 Jan 07, 2022
A simple python script to convert Rubber Ducky payloads into AutoHotKey scripts

AHKDuckyReplacer A simple python script to convert Rubber Ducky payloads into AutoHotKey scripts. I have also added a sample payload for testing. I wi

Krizsan0596 5 Sep 28, 2022
A simple desktop application to scan and export Genshin Impact Artifacts.

「天目」 -- Amenoma 简体中文 | English 「天目流的诀窍就是滴水穿石的耐心和全力以赴的意志」 扫描背包中的圣遗物,并导出至 json 格式。之后可导入圣遗物分析工具( 莫娜占卜铺 、 MingyuLab 、 Genshin Optimizer 进行计算与规划等。 已支持 原神2.

夏至 475 Dec 30, 2022
MODeflattener deobfuscates control flow flattened functions obfuscated by OLLVM using Miasm.

MODeflattener deobfuscates control flow flattened functions obfuscated by OLLVM using Miasm.

Suraj Malhotra 138 Jan 07, 2023
Slotscheck - Find mistakes in your slots definitions

🎰 Slotscheck Adding __slots__ to a class in Python is a great way to reduce mem

Arie Bovenberg 67 Dec 31, 2022
0xFalcon - 0xFalcon Tool For Python

0xFalcone Installation Install 0xFalcone Tool: apt install git git clone https:/

Alharb7 6 Sep 24, 2022
Software that extracts spreadsheets from various .pdf files to .csv

Extração de planilhas de diversos arquivos .pdf para .csv O código inteiro foi desenvolvido em Python. Foi utilizado o pacote "tabula" e a biblioteca

Marcos Silva 2 Jan 09, 2022
GNU/Linux'u yeni kurulumu bitirmiş olarak açtığınızda sizi karşılayacak bir uygulama.

Hoş Geldiniz GNU/Linux'u yeni kurulumu bitirmiş olarak açtığınızda sizi karşılayacak bir uygulama.

Alperen İsa 96 Oct 30, 2022
Code for the manim-generated scenes used in 3blue1brown videos

This project contains the code used to generate the explanatory math videos found on 3Blue1Brown. This almost entirely consists of scenes generated us

Grant Sanderson 4.1k Jan 02, 2023
本仓库整理了腾讯视频、爱奇艺、优酷、哔哩哔哩等视频网站中,能够观看的「豆瓣电影 Top250 榜单」影片。

Where is top 250 movie ? 本仓库整理了腾讯视频、爱奇艺、优酷、哔哩哔哩等视频网站中,能够观看的「豆瓣电影 Top250 榜单」影片,点击 Badge 可跳转至相应的电影首页。

MayanDev 123 Dec 22, 2022