Python bindings for BigML.io

Overview

BigML Python Bindings

BigML makes machine learning easy by taking care of the details required to add data-driven decisions and predictive power to your company. Unlike other machine learning services, BigML creates beautiful predictive models that can be easily understood and interacted with.

These BigML Python bindings allow you to interact with BigML.io, the API for BigML. You can use it to easily create, retrieve, list, update, and delete BigML resources (i.e., sources, datasets, models and, predictions). For additional information, see the full documentation for the Python bindings on Read the Docs.

This module is licensed under the Apache License, Version 2.0.

Support

Please report problems and bugs to our BigML.io issue tracker.

Discussions about the different bindings take place in the general BigML mailing list. Or join us in our Campfire chatroom.

Requirements

Only Python 3 versions are currently supported by these bindings. Support for Python 2.7.X ended in version 4.32.3.

The basic third-party dependencies are the requests, unidecode and requests-toolbelt bigml-chronos, numpy and scipy libraries. These libraries are automatically installed during the setup. Support for Google App Engine has been added as of version 3.0.0, using the urlfetch package instead of requests.

The bindings will also use simplejson if you happen to have it installed, but that is optional: we fall back to Python's built-in JSON libraries is simplejson is not found.

Also in order to use local Topic Model predictions, you will need to install pystemmer. Using the pip install command for this library can produce an error if your system lacks the correct developer tools to compile it. In Windows, the error message will include a link pointing to the needed Visual Studio version and in OSX you'll need to install the Xcode developer tools.

Installation

To install the latest stable release with pip

$ pip install bigml

You can also install the development version of the bindings directly from the Git repository

$ pip install -e git://github.com/bigmlcom/python.git#egg=bigml_python

Running the Tests

The test will be run using nose , that is installed on setup, and you'll need to set up your authentication via environment variables, as explained in the authentication section. Also some of the tests need other environment variables like BIGML_ORGANIZATION to test calls when used by Organization members and BIGML_EXTERNAL_CONN_HOST, BIGML_EXTERNAL_CONN_PORT, BIGML_EXTERNAL_CONN_DB, BIGML_EXTERNAL_CONN_USER, BIGML_EXTERNAL_CONN_PWD and BIGML_EXTERNAL_CONN_SOURCE in order to test external data connectors.

With that in place, you can run the test suite simply by issuing

$ python setup.py nosetests

Additionally, Tox can be used to automatically run the test suite in virtual environments for all supported Python versions. To install Tox:

$ pip install tox

Then run the tests from the top-level project directory:

$ tox

Importing the module

To import the module:

import bigml.api

Alternatively you can just import the BigML class:

from bigml.api import BigML

Authentication

All the requests to BigML.io must be authenticated using your username and API key and are always transmitted over HTTPS.

This module will look for your username and API key in the environment variables BIGML_USERNAME and BIGML_API_KEY respectively.

Unix and MacOS

You can add the following lines to your .bashrc or .bash_profile to set those variables automatically when you log in:

export BIGML_USERNAME=myusername
export BIGML_API_KEY=ae579e7e53fb9abd646a6ff8aa99d4afe83ac291

refer to the next chapters to know how to do that in other operating systems.

With that environment set up, connecting to BigML is a breeze:

from bigml.api import BigML
api = BigML()

Otherwise, you can initialize directly when instantiating the BigML class as follows:

api = BigML('myusername', 'ae579e7e53fb9abd646a6ff8aa99d4afe83ac291')

These credentials will allow you to manage any resource in your user environment.

In BigML a user can also work for an organization. In this case, the organization administrator should previously assign permissions for the user to access one or several particular projects in the organization. Once permissions are granted, the user can work with resources in a project according to his permission level by creating a special constructor for each project. The connection constructor in this case should include the project ID:

api = BigML('myusername', 'ae579e7e53fb9abd646a6ff8aa99d4afe83ac291',
            project='project/53739b98d994972da7001d4a')

If the project used in a connection object does not belong to an existing organization but is one of the projects under the user's account, all the resources created or updated with that connection will also be assigned to the specified project.

When the resource to be managed is a project itself, the connection needs to include the corresponding``organization ID``:

api = BigML('myusername', 'ae579e7e53fb9abd646a6ff8aa99d4afe83ac291',
            organization='organization/53739b98d994972da7025d4a')

Authentication on Windows

The credentials should be permanently stored in your system using

setx BIGML_USERNAME myusername
setx BIGML_API_KEY ae579e7e53fb9abd646a6ff8aa99d4afe83ac291

Note that setx will not change the environment variables of your actual console, so you will need to open a new one to start using them.

Authentication on Jupyter Notebook

You can set the environment variables using the %env command in your cells:

%env BIGML_USERNAME=myusername
%env BIGML_API_KEY=ae579e7e53fb9abd646a6ff8aa99d4afe83ac291

Alternative domains

The main public domain for the API service is bigml.io, but there are some alternative domains, either for Virtual Private Cloud setups or the australian subdomain (au.bigml.io). You can change the remote server domain to the VPC particular one by either setting the BIGML_DOMAIN environment variable to your VPC subdomain:

export BIGML_DOMAIN=my_VPC.bigml.io

or setting it when instantiating your connection:

api = BigML(domain="my_VPC.bigml.io")

The corresponding SSL REST calls will be directed to your private domain henceforth.

You can also set up your connection to use a particular PredictServer only for predictions. In order to do so, you'll need to specify a Domain object, where you can set up the general domain name as well as the particular prediction domain name.

from bigml.domain import Domain
from bigml.api import BigML

domain_info = Domain(prediction_domain="my_prediction_server.bigml.com",
                     prediction_protocol="http")

api = BigML(domain=domain_info)

Finally, you can combine all the options and change both the general domain server, and the prediction domain server.

from bigml.domain import Domain
from bigml.api import BigML
domain_info = Domain(domain="my_VPC.bigml.io",
                     prediction_domain="my_prediction_server.bigml.com",
                     prediction_protocol="https")

api = BigML(domain=domain_info)

Some arguments for the Domain constructor are more unsual, but they can also be used to set your special service endpoints:

  • protocol (string) Protocol for the service (when different from HTTPS)
  • verify (boolean) Sets on/off the SSL verification
  • prediction_verify (boolean) Sets on/off the SSL verification for the prediction server (when different from the general SSL verification)

Note that the previously existing dev_mode flag:

api = BigML(dev_mode=True)

that caused the connection to work with the Sandbox Development Environment has been deprecated because this environment does not longer exist. The existing resources that were previously created in this environment have been moved to a special project in the now unique Production Environment, so this flag is no longer needed to work with them.

Quick Start

Imagine that you want to use this csv file containing the Iris flower dataset to predict the species of a flower whose petal length is 2.45 and whose petal width is 1.75. A preview of the dataset is shown below. It has 4 numeric fields: sepal length, sepal width, petal length, petal width and a categorical field: species. By default, BigML considers the last field in the dataset as the objective field (i.e., the field that you want to generate predictions for).

sepal length,sepal width,petal length,petal width,species
5.1,3.5,1.4,0.2,Iris-setosa
4.9,3.0,1.4,0.2,Iris-setosa
4.7,3.2,1.3,0.2,Iris-setosa
...
5.8,2.7,3.9,1.2,Iris-versicolor
6.0,2.7,5.1,1.6,Iris-versicolor
5.4,3.0,4.5,1.5,Iris-versicolor
...
6.8,3.0,5.5,2.1,Iris-virginica
5.7,2.5,5.0,2.0,Iris-virginica
5.8,2.8,5.1,2.4,Iris-virginica

You can easily generate a prediction following these steps:

from bigml.api import BigML

api = BigML()

source = api.create_source('./data/iris.csv')
dataset = api.create_dataset(source)
model = api.create_model(dataset)
prediction = api.create_prediction(model, \
    {"petal width": 1.75, "petal length": 2.45})

You can then print the prediction using the pprint method:

>>> api.pprint(prediction)
species for {"petal width": 1.75, "petal length": 2.45} is Iris-setosa

Certainly, any of the resources created in BigML can be configured using several arguments described in the API documentation. Any of these configuration arguments can be added to the create method as a dictionary in the last optional argument of the calls:

from bigml.api import BigML

api = BigML()

source_args = {"name": "my source",
     "source_parser": {"missing_tokens": ["NULL"]}}
source = api.create_source('./data/iris.csv', source_args)
dataset_args = {"name": "my dataset"}
dataset = api.create_dataset(source, dataset_args)
model_args = {"objective_field": "species"}
model = api.create_model(dataset, model_args)
prediction_args = {"name": "my prediction"}
prediction = api.create_prediction(model, \
    {"petal width": 1.75, "petal length": 2.45},
    prediction_args)

The iris dataset has a small number of instances, and usually will be instantly created, so the api.create_ calls will probably return the finished resources outright. As BigML's API is asynchronous, in general you will need to ensure that objects are finished before using them by using api.ok.

from bigml.api import BigML

api = BigML()

source = api.create_source('./data/iris.csv')
api.ok(source)
dataset = api.create_dataset(source)
api.ok(dataset)
model = api.create_model(dataset)
api.ok(model)
prediction = api.create_prediction(model, \
    {"petal width": 1.75, "petal length": 2.45})

Note that the prediction call is not followed by the api.ok method. Predictions are so quick to be generated that, unlike the rest of resouces, will be generated synchronously as a finished object.

The example assumes that your objective field (the one you want to predict) is the last field in the dataset. If that's not he case, you can explicitly set the name of this field in the creation call using the objective_field argument:

from bigml.api import BigML

api = BigML()

source = api.create_source('./data/iris.csv')
api.ok(source)
dataset = api.create_dataset(source)
api.ok(dataset)
model = api.create_model(dataset, {"objective_field": "species"})
api.ok(model)
prediction = api.create_prediction(model, \
    {'sepal length': 5, 'sepal width': 2.5})

You can also generate an evaluation for the model by using:

test_source = api.create_source('./data/test_iris.csv')
api.ok(test_source)
test_dataset = api.create_dataset(test_source)
api.ok(test_dataset)
evaluation = api.create_evaluation(model, test_dataset)
api.ok(evaluation)

If you set the storage argument in the api instantiation:

api = BigML(storage='./storage')

all the generated, updated or retrieved resources will be automatically saved to the chosen directory.

Alternatively, you can use the export method to explicitly download the JSON information that describes any of your resources in BigML to a particular file:

api.export('model/5acea49a08b07e14b9001068',
           filename="my_dir/my_model.json")

This example downloads the JSON for the model and stores it in the my_dir/my_model.json file.

In the case of models that can be represented in a PMML syntax, the export method can be used to produce the corresponding PMML file.

api.export('model/5acea49a08b07e14b9001068',
           filename="my_dir/my_model.pmml",
           pmml=True)

You can also retrieve the last resource with some previously given tag:

api.export_last("foo",
                resource_type="ensemble",
                filename="my_dir/my_ensemble.json")

which selects the last ensemble that has a foo tag. This mechanism can be specially useful when retrieving retrained models that have been created with a shared unique keyword as tag.

For a descriptive overview of the steps that you will usually need to follow to model your data and obtain predictions, please see the basic Workflow sketch document. You can also check other simple examples in the following documents:

Additional Information

We've just barely scratched the surface. For additional information, see the full documentation for the Python bindings on Read the Docs. Alternatively, the same documentation can be built from a local checkout of the source by installing Sphinx ($ pip install sphinx) and then running

$ cd docs
$ make html

Then launch docs/_build/html/index.html in your browser.

How to Contribute

Please follow the next steps:

  1. Fork the project on github.com.
  2. Create a new branch.
  3. Commit changes to the new branch.
  4. Send a pull request.

For details on the underlying API, see the BigML API documentation.

Owner
BigML Inc, Machine Learning made easy
BigML Inc, Machine Learning made easy
Docker image for epicseven gvg qq chatbot based on Xunbot

XUN_Langskip XUN 是一个基于 NoneBot 和 酷Q 的功能型QQ机器人,目前提供了音乐点播、音乐推荐、天气查询、RSSHub订阅、使用帮助、识图、识番、搜番、上车、磁力搜索、地震速报、计算、日语词典、翻译、自我检查,权限等级功能,由于是为了完成自己在群里的承诺,一时兴起才做的,所

Xavier Xiong 2 Jun 08, 2022
Aio-binance-library - Async library for connecting to the Binance API on Python

aio-binance-library Async library for connecting to the Binance API on Python Th

GRinvest 10 Nov 21, 2022
A Discord bot made by QwertyIsCoding

QwertyBot QwertyBot A Discord bot made by QwertyIsCoding Explore the docs » View Demo . Report Bug . Request Feature About The Project This Discord bo

4 Oct 08, 2022
Automatically searching for vaccine appointments

Vaccine Appointments Automatically searching for vaccine appointments Usage To copy this package, run: git clone https://github.com/TheIronicCurtain/v

58 Apr 13, 2021
😈 Discord RAGE is a Python tool that allows you to automatically spam messages in Discord

😈 Discord RAGE Python tool that allows you to automatically spam messages in Discord 🏹 Setup Make sure you have Python installed and PIP is added to

Alphalius 4 Jun 12, 2022
Neko is An Anime themed advance Telegram group management bot.

NekoRobot A modular telegram Python bot running on python3 with an sqlalchemy, mongodb database. ╒═══「 Status 」 Maintained Support Group Included Free

Lovely Prince 11 Oct 11, 2022
CVE-2021-39685 Description and sample exploit for Linux USB Gadget overflow vulnerability

CVE-2021-39685 Description and sample exploit for Linux USB Gadget overflow vulnerability

8 May 25, 2022
Verkehrsunfälle in Deutschland, aufgeschlüsselt nach Verkehrsmittel des Hauptverursachers und Nebenverursachers

How-To Einfach ./main.py ausführen mit der Statistik-Datei aus dem Ordner "Unfälle_mit_mehreren_Beteiligten" als erstem Argument. Requirements python,

4 Oct 12, 2022
Collect links to profiles by username through search engines

Marple Summary Collect links to profiles by username through search engines (currently Google and DuckDuckGo). Quick Start ./marple.py soxoj Results:

125 Dec 19, 2022
Twitch Linux Typer

Twitch Linux Typer The most cursed Twitch chat bot Listens to twitch chat, and then types it handles hotkeys and button presses via the ^ char, eg ctr

Robin Universe 4 Jun 27, 2022
Cogs for Red-DiscordBot

matcha-cogs Cogs for Red-DiscordBot. Installation [p]repo add matcha-cogs

MatchaTeaLeaf 2 Aug 27, 2022
Rich presence app for playstation 3. Display what game you are playing on the PS3 via Discord

PS3-Rich-Presence-for-Discord Discord Rich Presence script for PS3 consoles on HFW&HEN or CFW. Written in Python. Display what you are playing on your

17 Dec 11, 2022
Small Python Tracker clone of Electra

Discord Bot Tracker - Python Simply Track your Bots (Status) to get notified when one of those go offline/online. Paste IDs into the config.py files,

Koni 2 Nov 23, 2021
Track to Detect and Segment: An Online Multi-Object Tracker (CVPR 2021)

Track to Detect and Segment: An Online Multi-Object Tracker (CVPR 2021) Track to Detect and Segment: An Online Multi-Object Tracker Jialian Wu, Jiale

Jialian Wu 520 Dec 31, 2022
A library that allows you to easily mock out tests based on AWS infrastructure.

Moto - Mock AWS Services Install $ pip install moto[ec2,s3,all] In a nutshell Moto is a library that allows your tests to easily mock out AWS Services

Steve Pulec 6.5k Jan 02, 2023
Simple Discord bot for snekbox (sandboxed Python code execution), self-host or use a global instance

snakeboxed Simple Discord bot for snekbox (sandboxed Python code execution), self-host or use a global instance

0 Jun 25, 2022
AWSXenos will list all the trust relationships in all the IAM roles and S3 buckets

AWS External Account Scanner Xenos, is Greek for stranger. AWSXenos will list all the trust relationships in all the IAM roles, and S3 buckets, in an

AirWalk 57 Nov 07, 2022
Cogs for RedDiscord-Bot V3

Cogs v3 Disclaimer: This is an unapproved repo, meaning no one has formally reviewed this repo yet and any loss of data in your bot isn't my fault (An

Honkertonken 5 Nov 17, 2022
Telegram Music Bot for YouTube/SoundCloud/Mixcloud

Telegram Music Bot Telegram Music Bot for YouTube/SoundCloud/Mixcloud This bot downloads and sends the audio when someone send a YouTube/SoundCloud/Mi

Calls Music 76 Jan 02, 2023
Discord Remote Administration Tool

Discord Remote Administration Tool

Rdimo 82 Aug 15, 2022