To effectively detect the faulty wafers

Overview

wafer_fault_detection

Aim of the project:

In electronics, a wafer (also called a slice or substrate) is a thin slice of semiconductor, such as crystalline silicon (c-Si), used for the fabrication of integrated circuits and, in photovoltaics, to manufacture solar cells. The wafer serves as the substrate for microelectronic devices built in and upon the wafer. The project aims to successfully identify the state of the provided wafer by classifying it between one of the two-class +1 (good, can be used as a substrate) or -1 (bad, the substrate need to be replaced). In this regard, a training dataset is provided to build a machine learning classification model, which can predict the wafer quality.

Data Description:

The columns of provided data can be classified into 3 parts: wafer name, sensor values and label. The wafer name contains the batch number of the wafer, whereas the sensor values obtained from the measurement carried out on the wafer. The label column contains two unique values +1 and -1 that identifies if the wafer is good or need to be replaced. Additionally, we also require a schema file, which contains all the relevant information about the training files such as file names, length of date value in the file name, length of time value in the file name, number of columns, name of the columns, and their datatype.

Directory creation:

All the necessary folders were created to effectively separate the files so that the end-user can get easy access to them.

Data Validation:

In this step, we matched our dataset with the provided schema file to match the file names, the number of columns it should contain, their names as well as their datatype. If the files matched with the schema values, then it is considered a good file on which we can train or predict our model, if not then the files are considered as bad and moved to the bad folder. Moreover, we also identify the columns with null values. If the whole column data is missing then we also consider the file as bad, on the contrary, if only a fraction of data in a column is missing then we initially fill it with NaN and consider it as good data.

Data Insertion in Database:

First, we create a database with the given name passed. If the database is already created, open the connection to the database. A table with the name- "train_good_raw_dt" or "pred_good_raw_dt" is created in the database, based on training or prediction, for inserting the good data files obtained from the data validation step. If the table is already present, then the new table is not created, and new files are inserted in the already present table as we want training to be done on new as well as old training files. In the end, the data in a stored database is exported as a CSV file to be used for model training.

Data Pre-processing and Model Training:

In the training section, first, the data is checked for the NaN values in the columns. If present, impute the NaN values using the KNN imputer. The column with zero standard deviation was also identified and removed as they don't give any information during model training. A prediction schema was created based on the remained dataset columns. Afterwards, the KMeans algorithm is used to create clusters in the pre-processed data. The optimum number of clusters is selected by plotting the elbow plot, and for the dynamic selection of the number of clusters, we are using the "KneeLocator" function. The idea behind clustering is to implement different algorithms to train data in different clusters. The Kmeans model is trained over pre-processed data and the model is saved for further use in prediction. After clusters are created, we find the best model for each cluster. We are using four algorithms, "Random Forest" “K Neighbours”, “Logistic Regression” and "XGBoost". For each cluster, both the algorithms are passed with the best parameters derived from GridSearch. We calculate the AUC scores for both models and select the model with the best score. Similarly, the best model is selected for each cluster. All the models for every cluster are saved for use in prediction. In the end, the confusion matrix of the model associated with every cluster is also saved to give a glance at the performance of the models.

Prediction:

In data prediction, first, the essential directories are created. The data validation, data insertion and data processing steps are similar to the training section. The KMeans model created during training is loaded, and clusters for the pre-processed prediction data is predicted. Based on the cluster number, the respective model is loaded and is used to predict the data for that cluster. Once the prediction is made for all the clusters, the predictions along with the Wafer names are saved in a CSV file at a given location.

Deployment:

We will be deploying the model to Heroku Cloud.

Owner
Arun Singh Babal
Engineer | Data Science Enthusiasts | Machine Learning | Deep Learning | Advanced Computer Vision.
Arun Singh Babal
Automatically skip sponsor segments in YouTube videos playing on Apple TV.

iSponsorBlockTV Skip sponsor segments in YouTube videos playing on an Apple TV. This project is written in asycronous python and should be pretty quic

David 64 Dec 17, 2022
Online learning platform

🛠 Status: In Development Teached is currently in development. So we encourage you to use it and give us your feedback, but there are things that have

Mohamed Nesredin 2 Feb 07, 2021
Simple project to learn more about Bézier curves

Python Quadratic Bézier Simple project to learn more about Bézier curves. On this project i used some api's to graphics and gui pygame thorpy in theor

Kenned Ferreira 2 Mar 06, 2022
A simple armature retargeting tool for Blender

Simple-Retarget-Tool-Blender A simple armature retargeting tool for Blender Update V2: Set Rest Pose to easily apply rest pose. Preset Import/Export.

Fahad Hasan Pathik 74 Jan 04, 2023
Traits for Python3

Do you like Python, but think that multiple inheritance is a bit too flexible? Are you looking for a more constrained way to define interfaces and re-use code?

121 Nov 15, 2022
0xFalcon - 0xFalcon Tool For Python

0xFalcone Installation Install 0xFalcone Tool: apt install git git clone https:/

Alharb7 6 Sep 24, 2022
run-js Goal: The Easiest Way to Run JavaScript in Python

run-js Goal: The Easiest Way to Run JavaScript in Python features Stateless Async JS Functions No Intermediary Files Functional Programming CommonJS a

Daniel J. Dufour 9 Aug 16, 2022
SpaCy3Urdu: run command to setup assets(dataset from UD)

Project setup run command to setup assets(dataset from UD) spacy project assets It uses project.yml file and download the data from UD GitHub reposito

Muhammad Irfan 1 Dec 14, 2021
Urban Big Data Centre Housing Sensor Project

Housing Sensor Project The Urban Big Data Centre is conducting a study of indoor environmental data in Scottish houses. We are using Raspberry Pi devi

Jeremy Singer 2 Dec 13, 2021
Project repository of Apache Airflow, deployed on Docker in Amazon EC2 via GitLab.

Airflow on Docker in EC2 + GitLab's CI/CD Personal project for simple data pipeline using Airflow. Airflow will be installed inside Docker container,

Ammar Chalifah 13 Nov 29, 2022
A Sophisticated And Beautiful Doxing Tool

Garuda V1.1 A Sophisticated And Beautiful Doxing Tool Works on Android[Termux] | Linux | Windows Don't Forget to give it a star ❗ How to use ❓ First o

The Cryptonian 67 Jan 10, 2022
GDSC UIET KUK 📍 , welcomes you all to this amazing event where you will be introduced to the world of coding 💻 .

GDSC UIET KUK 📍 , welcomes you all to this amazing event where you will be introduced to the world of coding 💻 .

Google Developer Student Club UIET KUK 9 Mar 24, 2022
Some basic sorting algos

Sorting-Algos Some basic sorting algos HacktoberFest 2021 This repository consists of mezzo-level projects that undertake a simple task and perform it

Manthan Ghasadiya 7 Dec 13, 2022
Adds a Bake node to Blender's shader node system

Bake to Target This Blender Addon adds a new shader node type capable of reducing the texture-bake step to a single button press. Please note that thi

Thomas 8 Oct 04, 2022
A web app that is written entirely in Python

University Project About I made this web app to finish a project assigned by my teacher. It is written entirely in Python, thanks to streamlit to make

15 Nov 27, 2022
Groupe du projet Python en 2TL2-4

Présentation Projet EpheCom Ce logiciel a été développé dans le cadre scolaire. EpheCom est un logiciel de communications - vocale et écrite - en temp

1 Dec 26, 2021
RangDev Notepad App With Python

RangDev Notepad-App-With-Python Take down quick and speedy notes! This is a small project of a notepad app built with Tkinter and SQLite3. Database cr

rangga.alrasya 1 Dec 01, 2021
A calculator to test numbers against the collatz conjecture

The Collatz Calculator This is an algorithm custom built by Kyle Dickey, used to test numbers against the simple rules of the Collatz Conjecture.

Kyle Dickey 2 Jun 14, 2022
Bionic is Python Framework for crafting beautiful, fast user experiences for web and is free and open source.

Bionic is Python Framework for crafting beautiful, fast user experiences for web and is free and open source. Getting Started This is an example of ho

14 Apr 10, 2022
Poetry workspace plugin for Python monorepos.

poetry-workspace-plugin Poetry workspace plugin for Python monorepos. Inspired by Yarn Workspaces. Adds a new subcommand group, poetry workspace, whic

Jack Smith 74 Jan 01, 2023