To effectively detect the faulty wafers

Overview

wafer_fault_detection

Aim of the project:

In electronics, a wafer (also called a slice or substrate) is a thin slice of semiconductor, such as crystalline silicon (c-Si), used for the fabrication of integrated circuits and, in photovoltaics, to manufacture solar cells. The wafer serves as the substrate for microelectronic devices built in and upon the wafer. The project aims to successfully identify the state of the provided wafer by classifying it between one of the two-class +1 (good, can be used as a substrate) or -1 (bad, the substrate need to be replaced). In this regard, a training dataset is provided to build a machine learning classification model, which can predict the wafer quality.

Data Description:

The columns of provided data can be classified into 3 parts: wafer name, sensor values and label. The wafer name contains the batch number of the wafer, whereas the sensor values obtained from the measurement carried out on the wafer. The label column contains two unique values +1 and -1 that identifies if the wafer is good or need to be replaced. Additionally, we also require a schema file, which contains all the relevant information about the training files such as file names, length of date value in the file name, length of time value in the file name, number of columns, name of the columns, and their datatype.

Directory creation:

All the necessary folders were created to effectively separate the files so that the end-user can get easy access to them.

Data Validation:

In this step, we matched our dataset with the provided schema file to match the file names, the number of columns it should contain, their names as well as their datatype. If the files matched with the schema values, then it is considered a good file on which we can train or predict our model, if not then the files are considered as bad and moved to the bad folder. Moreover, we also identify the columns with null values. If the whole column data is missing then we also consider the file as bad, on the contrary, if only a fraction of data in a column is missing then we initially fill it with NaN and consider it as good data.

Data Insertion in Database:

First, we create a database with the given name passed. If the database is already created, open the connection to the database. A table with the name- "train_good_raw_dt" or "pred_good_raw_dt" is created in the database, based on training or prediction, for inserting the good data files obtained from the data validation step. If the table is already present, then the new table is not created, and new files are inserted in the already present table as we want training to be done on new as well as old training files. In the end, the data in a stored database is exported as a CSV file to be used for model training.

Data Pre-processing and Model Training:

In the training section, first, the data is checked for the NaN values in the columns. If present, impute the NaN values using the KNN imputer. The column with zero standard deviation was also identified and removed as they don't give any information during model training. A prediction schema was created based on the remained dataset columns. Afterwards, the KMeans algorithm is used to create clusters in the pre-processed data. The optimum number of clusters is selected by plotting the elbow plot, and for the dynamic selection of the number of clusters, we are using the "KneeLocator" function. The idea behind clustering is to implement different algorithms to train data in different clusters. The Kmeans model is trained over pre-processed data and the model is saved for further use in prediction. After clusters are created, we find the best model for each cluster. We are using four algorithms, "Random Forest" “K Neighbours”, “Logistic Regression” and "XGBoost". For each cluster, both the algorithms are passed with the best parameters derived from GridSearch. We calculate the AUC scores for both models and select the model with the best score. Similarly, the best model is selected for each cluster. All the models for every cluster are saved for use in prediction. In the end, the confusion matrix of the model associated with every cluster is also saved to give a glance at the performance of the models.

Prediction:

In data prediction, first, the essential directories are created. The data validation, data insertion and data processing steps are similar to the training section. The KMeans model created during training is loaded, and clusters for the pre-processed prediction data is predicted. Based on the cluster number, the respective model is loaded and is used to predict the data for that cluster. Once the prediction is made for all the clusters, the predictions along with the Wafer names are saved in a CSV file at a given location.

Deployment:

We will be deploying the model to Heroku Cloud.

Owner
Arun Singh Babal
Engineer | Data Science Enthusiasts | Machine Learning | Deep Learning | Advanced Computer Vision.
Arun Singh Babal
Explores the python bytecode, provides some tools to access it for fun and profit.

Pyasmtools - looking at the python bytecode for fun and profit. The pyasmtools library is made up of two parts A python bytecode disassembler . See Py

Michael Moser 299 Jan 04, 2023
A script where you execute a script that generates a base project for your gdextension

GDExtension Project Creator this is a script (currently only for linux) where you execute a script that generates a base project for your gdextension,

Unknown 11 Nov 17, 2022
Nextstrain build targeted to Omicron

About This repository analyzes viral genomes using Nextstrain to understand how SARS-CoV-2, the virus that is responsible for the COVID-19 pandemic, e

Bedford Lab 9 May 25, 2022
Simple Crud Python vs MySQL

Simple Crud Python vs MySQL The idea came when I was studying MySQ... A desire to create a python program that can give access to a "localhost" databa

Lucas 1 Jan 21, 2022
My qtile config with a fresh-looking bar and pywal support

QtileConfig My qtile config with a fresh-looking bar and pywal support. Note: This is my first rice and first github repo. Please excuse my poor codin

Eden 4 Nov 10, 2021
Improving the Transferability of Adversarial Examples with Resized-Diverse-Inputs, Diversity-Ensemble and Region Fitting

Improving the Transferability of Adversarial Examples with Resized-Diverse-Inputs, Diversity-Ensemble and Region Fitting

Junhua Zou 7 Oct 20, 2022
Leveraging pythonic forces to defeat different coding challenges 🐍

Pyforces Leveraging pythonic forces to defeat different coding challenges! Table of Contents Pyforces Tests Pyforces Pyforces is a study repo with a c

Igor Grillo Peternella 8 Dec 14, 2022
Machine Learning powered app to decide whether a photo is food or not.

Food Not Food dot app ( 🍔 🚫 🍔 ) Code for building a machine Learning powered app to decide whether a photo is of food or not. See it working live a

Daniel Bourke 48 Dec 28, 2022
All solutions for the 2021 Advent of Code event.

Advent of Code 2021 Solutions All solutions for the 2021 Advent of Code event. Setup Create a file called .session. Go to adventofcode.com and copy th

Bruce Berrios 6 Dec 26, 2021
Proyecto - Análisis de texto de eventos históricos

Acceder al código desde Google Colab para poder ver de manera adecuada todas las visualizaciones y poder interactuar con ellas. Link de acceso: https:

1 Jan 31, 2022
libvcs - abstraction layer for vcs, powers vcspull.

libvcs - abstraction layer for vcs, powers vcspull. Setup $ pip install libvcs Open up python: $ python # or for nice autocomplete and syntax highlig

python utilities for version control 46 Dec 14, 2022
Nfog - Scriptable Database-Driven NFO Generator for Movies and TV

nfog Scriptable Database-Driven NFO Generator for Movies and TV. Installation pi

6 Oct 08, 2022
This is the Halloween edition of my Flask Greeting App - HAPPY HALLOWEEEN EVERYONE! :)

HalloweenGreetingApp HAPPY HALLOWEEN EVERYONE! :) This is the Halloween Edition of my Flask Greeting App! Please note, this application is mean to be

Mariya 2 Feb 04, 2022
Helps to arrange nodes

Relax brush for nodes, helps to arrange nodes easier.

336 Dec 15, 2022
The next generation Canto RSS daemon

Canto Daemon This is the RSS backend for Canto clients. Canto-curses is the default client at: http://github.com/themoken/canto-curses Requirements De

Jack Miller 155 Dec 28, 2022
Manjaro CN Repository

Manjaro CN Repository Automatically built packages based on archlinuxcn/repo and manjarocn/docker. Install Add manjarocn to /etc/pacman.conf: Please m

Manjaro CN 28 Jun 26, 2022
Open HW & SW for Scanning Electron Microscopes

OpenSEM Project Status: Preliminary The purpose of this project is to create a modern and open-source hardware and software platform for using vintage

Steven Lovegrove 7 Nov 01, 2022
The worst and slowest programming language you have ever seen

VenumLang this is a complete joke EXAMPLE: fizzbuzz in venumlang x = 0

Venum 7 Mar 12, 2022
A tool to build reproducible wheels for you Python project or for all of your dependencies

asaman: Amra Saman (আমরা সমান) This is a tool to build reproducible wheels for your Python project or for all of your dependencies. What this means is

Kushal Das 14 Aug 05, 2022