To effectively detect the faulty wafers

Overview

wafer_fault_detection

Aim of the project:

In electronics, a wafer (also called a slice or substrate) is a thin slice of semiconductor, such as crystalline silicon (c-Si), used for the fabrication of integrated circuits and, in photovoltaics, to manufacture solar cells. The wafer serves as the substrate for microelectronic devices built in and upon the wafer. The project aims to successfully identify the state of the provided wafer by classifying it between one of the two-class +1 (good, can be used as a substrate) or -1 (bad, the substrate need to be replaced). In this regard, a training dataset is provided to build a machine learning classification model, which can predict the wafer quality.

Data Description:

The columns of provided data can be classified into 3 parts: wafer name, sensor values and label. The wafer name contains the batch number of the wafer, whereas the sensor values obtained from the measurement carried out on the wafer. The label column contains two unique values +1 and -1 that identifies if the wafer is good or need to be replaced. Additionally, we also require a schema file, which contains all the relevant information about the training files such as file names, length of date value in the file name, length of time value in the file name, number of columns, name of the columns, and their datatype.

Directory creation:

All the necessary folders were created to effectively separate the files so that the end-user can get easy access to them.

Data Validation:

In this step, we matched our dataset with the provided schema file to match the file names, the number of columns it should contain, their names as well as their datatype. If the files matched with the schema values, then it is considered a good file on which we can train or predict our model, if not then the files are considered as bad and moved to the bad folder. Moreover, we also identify the columns with null values. If the whole column data is missing then we also consider the file as bad, on the contrary, if only a fraction of data in a column is missing then we initially fill it with NaN and consider it as good data.

Data Insertion in Database:

First, we create a database with the given name passed. If the database is already created, open the connection to the database. A table with the name- "train_good_raw_dt" or "pred_good_raw_dt" is created in the database, based on training or prediction, for inserting the good data files obtained from the data validation step. If the table is already present, then the new table is not created, and new files are inserted in the already present table as we want training to be done on new as well as old training files. In the end, the data in a stored database is exported as a CSV file to be used for model training.

Data Pre-processing and Model Training:

In the training section, first, the data is checked for the NaN values in the columns. If present, impute the NaN values using the KNN imputer. The column with zero standard deviation was also identified and removed as they don't give any information during model training. A prediction schema was created based on the remained dataset columns. Afterwards, the KMeans algorithm is used to create clusters in the pre-processed data. The optimum number of clusters is selected by plotting the elbow plot, and for the dynamic selection of the number of clusters, we are using the "KneeLocator" function. The idea behind clustering is to implement different algorithms to train data in different clusters. The Kmeans model is trained over pre-processed data and the model is saved for further use in prediction. After clusters are created, we find the best model for each cluster. We are using four algorithms, "Random Forest" “K Neighbours”, “Logistic Regression” and "XGBoost". For each cluster, both the algorithms are passed with the best parameters derived from GridSearch. We calculate the AUC scores for both models and select the model with the best score. Similarly, the best model is selected for each cluster. All the models for every cluster are saved for use in prediction. In the end, the confusion matrix of the model associated with every cluster is also saved to give a glance at the performance of the models.

Prediction:

In data prediction, first, the essential directories are created. The data validation, data insertion and data processing steps are similar to the training section. The KMeans model created during training is loaded, and clusters for the pre-processed prediction data is predicted. Based on the cluster number, the respective model is loaded and is used to predict the data for that cluster. Once the prediction is made for all the clusters, the predictions along with the Wafer names are saved in a CSV file at a given location.

Deployment:

We will be deploying the model to Heroku Cloud.

Owner
Arun Singh Babal
Engineer | Data Science Enthusiasts | Machine Learning | Deep Learning | Advanced Computer Vision.
Arun Singh Babal
VAST - Visualise Abstract Syntax Trees for Python

VAST VAST - Visualise Abstract Syntax Trees for Python. VAST generates ASTs for a given Python script and builds visualisations of them. Install Insta

Jesse Phillips 2 Feb 18, 2022
IST-Website - IST Tutoring Portal for python

IST Tutoring Portal This portal is a web based interface to handle student help

Jean 3 Jan 03, 2022
A random cat fact python module

A random cat fact python module

Fayas Noushad 4 Nov 28, 2021
Python-Roadmap - Дорожная карта по изучению Python

Python Roadmap Я решил сделать что-то вроде дорожной карты (Roadmap) для изучения языка Python. Возможно, если найдутся желающие дополнять ее, модифиц

Ruslan Prokhorov 1.2k Dec 28, 2022
Python script to commit to your github for a perfect commit streak. This is purely for education purposes, please don't use this script to do bad stuff.

Daily-Git-Commit Commit to repo every day for the perfect commit streak Requirments pip install -r requirements.txt Setup Download this repository. Cr

JareBear 34 Dec 14, 2022
AminoAutoRegFxck/AutoReg For AminoApps.com

AminoAutoRegFxck AminoAutoRegFxck/AutoReg For AminoApps.com Termux apt update -y apt upgrade -y pkg install python git clone https://github.com/LilZev

3 Jan 18, 2022
A modern Python build backend

trampolim A modern Python build backend. Features Task system, allowing to run arbitrary Python code during the build process (Planned) Easy to use CL

Filipe Laíns 39 Nov 08, 2022
This is a simple SV calling package for diploid assemblies.

dipdiff This is a simple SV calling package for diploid assemblies. It uses a modified version of svim-asm. The package includes its own version minim

Mikhail Kolmogorov 11 Jan 05, 2023
Junos PyEZ is a Python library to remotely manage/automate Junos devices.

The repo is under active development. If you take a clone, you are getting the latest, and perhaps not entirely stable code. DOCUMENTATION Official Do

Juniper Networks 623 Dec 10, 2022
Active Transport Analytics Model: A new strategic transport modelling and data visualization framework

{ATAM} Active Transport Analytics Model Active Transport Analytics Model (“ATAM”

ATAM Analytics 2 Dec 21, 2022
GDIT: Geometry Dash Info Tool

GDIT: Geometry Dash Info Tool This is the first large script that allows you to quickly get information from the Geometry Dash server

dezz0xY 2 Jan 09, 2022
An ongoing curated list of frameworks, libraries, learning tutorials, software and resources in Python Language.

Python Development Welcome to the world of Python. An ongoing curated list of frameworks, libraries, learning tutorials, software and resources in Pyt

Paul Veillard 2 Dec 24, 2021
A reproduction repo for a Scheduling bug in AirFlow 2.2.3

A reproduction repo for a Scheduling bug in AirFlow 2.2.3

Ilya Strelnikov 1 Feb 09, 2022
Simple dependency injection framework for Python

A simple, strictly typed dependency injection library.

BentoML 14 Jun 29, 2022
Convert long numbers into a human-readable format in Python

Convert long numbers into a human-readable format in Python

Alex Zaitsev 73 Dec 28, 2022
Ontario-Covid-Screening - An automated Covid-19 School Screening Tool for Ontario

Ontario-Covid19-Screening An automated Covid-19 School Screening Tool for Ontari

Rayan K 0 Feb 20, 2022
A parser of Windows Defender's DetectionHistory forensic artifact, containing substantial info about quarantined files and executables.

A parser of Windows Defender's DetectionHistory forensic artifact, containing substantial info about quarantined files and executables.

Jordan Klepser 101 Oct 30, 2022
Apilytics for Python - Easy API analytics for Python backends

apilytics-python Installation Sign up and get your API key from https://apilytics.io - we offer a completely free trial with no credit card required!

Apilytics 6 Sep 29, 2022
Remote execution of a simple function on the server

FunFetch Remote execution of a simple function on the server All types of Python support objects.

Decave 4 Jun 30, 2022
A Python application that helps users determine their calorie intake, and automatically generates customized weekly meal and workout plans based on metrics computed using their physical parameters

A Python application that helps users determine their calorie intake, and automatically generates customized weekly meal and workout plans based on metrics computed using their physical parameters

Anam Iqbal 1 Jan 13, 2022