To effectively detect the faulty wafers

Overview

wafer_fault_detection

Aim of the project:

In electronics, a wafer (also called a slice or substrate) is a thin slice of semiconductor, such as crystalline silicon (c-Si), used for the fabrication of integrated circuits and, in photovoltaics, to manufacture solar cells. The wafer serves as the substrate for microelectronic devices built in and upon the wafer. The project aims to successfully identify the state of the provided wafer by classifying it between one of the two-class +1 (good, can be used as a substrate) or -1 (bad, the substrate need to be replaced). In this regard, a training dataset is provided to build a machine learning classification model, which can predict the wafer quality.

Data Description:

The columns of provided data can be classified into 3 parts: wafer name, sensor values and label. The wafer name contains the batch number of the wafer, whereas the sensor values obtained from the measurement carried out on the wafer. The label column contains two unique values +1 and -1 that identifies if the wafer is good or need to be replaced. Additionally, we also require a schema file, which contains all the relevant information about the training files such as file names, length of date value in the file name, length of time value in the file name, number of columns, name of the columns, and their datatype.

Directory creation:

All the necessary folders were created to effectively separate the files so that the end-user can get easy access to them.

Data Validation:

In this step, we matched our dataset with the provided schema file to match the file names, the number of columns it should contain, their names as well as their datatype. If the files matched with the schema values, then it is considered a good file on which we can train or predict our model, if not then the files are considered as bad and moved to the bad folder. Moreover, we also identify the columns with null values. If the whole column data is missing then we also consider the file as bad, on the contrary, if only a fraction of data in a column is missing then we initially fill it with NaN and consider it as good data.

Data Insertion in Database:

First, we create a database with the given name passed. If the database is already created, open the connection to the database. A table with the name- "train_good_raw_dt" or "pred_good_raw_dt" is created in the database, based on training or prediction, for inserting the good data files obtained from the data validation step. If the table is already present, then the new table is not created, and new files are inserted in the already present table as we want training to be done on new as well as old training files. In the end, the data in a stored database is exported as a CSV file to be used for model training.

Data Pre-processing and Model Training:

In the training section, first, the data is checked for the NaN values in the columns. If present, impute the NaN values using the KNN imputer. The column with zero standard deviation was also identified and removed as they don't give any information during model training. A prediction schema was created based on the remained dataset columns. Afterwards, the KMeans algorithm is used to create clusters in the pre-processed data. The optimum number of clusters is selected by plotting the elbow plot, and for the dynamic selection of the number of clusters, we are using the "KneeLocator" function. The idea behind clustering is to implement different algorithms to train data in different clusters. The Kmeans model is trained over pre-processed data and the model is saved for further use in prediction. After clusters are created, we find the best model for each cluster. We are using four algorithms, "Random Forest" “K Neighbours”, “Logistic Regression” and "XGBoost". For each cluster, both the algorithms are passed with the best parameters derived from GridSearch. We calculate the AUC scores for both models and select the model with the best score. Similarly, the best model is selected for each cluster. All the models for every cluster are saved for use in prediction. In the end, the confusion matrix of the model associated with every cluster is also saved to give a glance at the performance of the models.

Prediction:

In data prediction, first, the essential directories are created. The data validation, data insertion and data processing steps are similar to the training section. The KMeans model created during training is loaded, and clusters for the pre-processed prediction data is predicted. Based on the cluster number, the respective model is loaded and is used to predict the data for that cluster. Once the prediction is made for all the clusters, the predictions along with the Wafer names are saved in a CSV file at a given location.

Deployment:

We will be deploying the model to Heroku Cloud.

Owner
Arun Singh Babal
Engineer | Data Science Enthusiasts | Machine Learning | Deep Learning | Advanced Computer Vision.
Arun Singh Babal
Quanser Labs Robotic Arm With Python

Quanser-Labs-Robotic-Arm As a team, we programmed a Robotic-Arm in Python on the

1 Jul 11, 2022
GCP Scripts and API Client Toolss

GCP Scripts and API Client Toolss Script Authentication The scripts and CLI assume GCP Application Default Credentials are set. Credentials can be set

3 Feb 21, 2022
This is a simple analogue clock made with turtle in python...

Analogue-Clock This is a simple analogue clock made with turtle in python... Requirements None, only you need to have windows 😉 ...Enjoy! Installatio

Abhyush 3 Jan 14, 2022
Button paginator using discord_components

Button Paginator With discord-components Button paginator using discord_components Welcome! It's a paginator for discord-componets! Thanks to the orig

Decave 7 Feb 12, 2022
Another Provably Rare Gem Miner 💎 (for Raritygems)

Provably Rare Gem Miner Go (for Rarity) Pull Request is strongly welcome as I don't know anything about Golang/Python/Web3. Usage Install Python 3.x i

朱里 6 Apr 22, 2022
Supply Chain will be a SAAS platfom to provide e-logistic facilites with most optimal

Shipp It Welcome To Supply Chain App [ Shipp It ] In "Shipp It" we are creating a full solution[web+app] for a entire supply chain from receiving orde

SAIKAT_CLAW 25 Dec 26, 2022
Density is a open-sourced multi-purpose tool for ROBLOX with some cool

Density is a open-sourced multi-purpose tool for ROBLOX with some cool

ssl 5 Jul 16, 2022
Python wrapper to different clients to determine how a particular term is used.

Python wrapper to different clients to determine how a particular term is used.

Chris Mungall 3 Oct 24, 2022
SmartGrid - Een poging tot een optimale SmartGrid oplossing, door Dirk Kuiper & Lars Zwaan

SmartGrid - Een poging tot een optimale SmartGrid oplossing, door Dirk Kuiper & Lars Zwaan

1 Jan 12, 2022
Reload all Blender add-on modules

Reload-Addon This add-on creates a list of the modules that the add-on selected in the drop-down menu contains and reloads them with the keyboard shor

2 Dec 02, 2021
Subnet calculator script using python

subnetCalculator Subnet calculator script using python3 Interactive Version Define the subnet variable interactively Use: subnetDict = subnetCalculato

1 Feb 15, 2022
A python script made for personal use to monitor for sports card restocks on target.com since they are sold out often

TargetProductMonitor A python script made for personal use to monitor for sports card resocks on target.com since they are sold out often. When a rest

Bryan Lorden 2 Jul 31, 2022
Procedural 3D data generation pipeline for architecture

Synthetic Dataset Generator Authors: Stanislava Fedorova Alberto Tono Meher Shashwat Nigam Jiayao Zhang Amirhossein Ahmadnia Cecilia bolognesi Dominik

Computational Design Institute 49 Nov 25, 2022
Easily map device and application controls to a midi controller

pymidicontroller Introduction Easily map device and application controls to a midi controller

Tane Barriball 24 May 16, 2022
C++ Environment InitiatorVisual Studio Code C / C++ Environment Initiator

Visual Studio Code C / C++ Environment Initiator Latest Version : v 1.0.1(2021/11/08) .exe link here About : Visual Studio Code에서 C/C++환경을 MinGW GCC/G

Junho Yoon 2 Dec 19, 2021
Better firefox bookmarks script for rofi

rofi-bookmarks Small python script to open firefox bookmarks with rofi. Features Icons! Only show bookmarks in a specified bookmark folder Show entire

32 Nov 10, 2022
Odoo. Open Source Apps To Grow Your Business.

Odoo Odoo is a suite of web based open source business apps. The main Odoo Apps include an Open Source CRM, Website Builder, eCommerce, Warehouse Mana

Odoo 27.6k Jan 09, 2023
Convert three types of color in your clipboard and paste it to the color property (gamma correct)

ColorPaster [Blender Addon] Convert three types of color in your clipboard and paste it to the color property (gamma correct) How to Use Hover your mo

13 Oct 31, 2022
A program that analyzes data from inertia measurement units installeed in aircraft and generates g-exceedance curves

A program that analyzes data from inertia measurement units installeed in aircraft and generates g-exceedance curves

Pooya 1 Nov 23, 2021
AlexaUsingPython - Alexa will pay attention to your order, as: Hello Alexa, play music, Hello Alexa

AlexaUsingPython - Alexa will pay attention to your order, as: Hello Alexa, play music, Hello Alexa, what's the time? Alexa will pay attention to your order, get it, and afterward do some activity as

Abubakar Sattar 10 Aug 18, 2022