A simple flask application to collect annotations for the Turing Change Point Dataset, a benchmark dataset for change point detection algorithms

Overview

AnnotateChange

Welcome to the repository of the "AnnotateChange" application. This application was created to collect annotations of time series data in order to construct the Turing Change Point Dataset (TCPD). The TCPD is a dataset of real-world time series used to evaluate change point detection algorithms. For the change point detection benchmark that was created using this dataset, see the Turing Change Point Detection Benchmark repository.

Any work that uses this repository should cite our paper: Van den Burg & Williams - An Evaluation of Change Point Detection Algorithms (2020). You can use the following BibTeX entry:

@article{vandenburg2020evaluation,
        title={An Evaluation of Change Point Detection Algorithms},
        author={{Van den Burg}, G. J. J. and Williams, C. K. I.},
        journal={arXiv preprint arXiv:2003.06222},
        year={2020}
}

Here's a screenshot of what the application looks like during the annotation process:

screenshot of 
AnnotateChange

Some of the features of AnnotateChange include:

  • Admin panel to add/remove datasets, add/remove annotation tasks, add/remove users, and inspect incoming annotations.

  • Basic user management: authentication, email confirmation, forgotten password, automatic log out after inactivity, etc. Users are only allowed to register using an email address from an approved domain.

  • Task assignment of time series to user is done on the fly, ensuring no user ever annotates the same dataset twice, and prioritising datasets that are close to a desired number of annotations.

  • Interactive graph of a time series that supports pan and zoom, support for multidimensional time series.

  • Mandatory "demo" to onboard the user to change point annotation.

  • Backup of annotations to the admin via email.

  • Time series datasets are verified upon upload acccording to a strict schema.

Getting Started

Below are instructions for setting up the application for local development and for running the application with Docker.

Basic

AnnotateChange can be launched quickly for local development as follows:

  1. Clone the repo

    $ git clone https://github.com/alan-turing-institute/AnnotateChange
    $ cd AnnotateChange
    
  2. Set up a virtual environment and install dependencies (requires Python 3.7+)

    $ sudo apt-get install -y python3-venv # assuming Ubuntu
    $ pip install wheel
    $ python3 -m venv ./venv
    $ source ./venv/bin/activate
    $ pip install -r requirements.txt
    
  3. Create local development environment file

    $ cp .env.example .env.development
    $ sed -i 's/DB_TYPE=mysql/DB_TYPE=sqlite3/g' .env.development
    

    With DB_TYPE=sqlite3, we don't have to deal with MySQL locally.

  4. Initialize the database (this will be a local app.db file).

    $ ./flask.sh db upgrade
    
  5. Create the admin user account

    $ ./flask.sh admin add --auto-confirm-email
    

    The --auto-confirm-email flag automatically marks the email address of the admin user as confirmed. This is mostly useful in development environments when you don't have a mail address set up yet.

  6. Run the application

    $ ./flask.sh run
    

    This should tell you where its running, probably localhost:5000. You should be able to log in with the admin account you've just created.

  7. As admin, upload ALL demo datasets (included in demo_data) through: Admin Panel -> Add dataset. You should then be able to follow the introduction to the app (available from the landing page).

  8. After completing the instruction, you then will be able to access the user interface ("Home") to annotate your own time series.

Docker

To use AnnotateChange locally using Docker, follow the steps below. For a full-fledged installation on a server, see the deployment instructions.

  1. Install docker and docker-compose.

  2. Clone this repository and switch to it:

    $ git clone https://github.com/alan-turing-institute/AnnotateChange
    $ cd AnnotateChange
    
  3. Build the docker image:

    $ docker build -t gjjvdburg/annotatechange .
    
  4. Create the directory for persistent MySQL database storage:

    $ mkdir -p persist/{instance,mysql}
    $ sudo chown :1024 persist/instance
    $ chmod 775 persist/instance
    $ chmod g+s persist/instance
    
  5. Copy the environment variables file:

    $ cp .env.example .env
    

    Some environment variables can be adjusted if needed. For example, when moving to production, you'll need to change the FLASK_ENV variable accordingly. Please also make sure to set a proper SECRET_KEY and AC_MYSQL_PASSWORD (= MYSQL_PASSWORD). You'll also need to configure a mail account so the application can send out emails for registration etc. This is what the variables prefixed with MAIL_ are for. The ADMIN_EMAIL is likely your own email, it is used when the app encounters an error and to send backups of the annotation records. You can limit the email domains users can use with the USER_EMAIL_DOMAINS variable. See the config.py file for more info on the configuration options.

  6. Create a local docker network for communiation between the AnnotateChange app and the MySQL server:

    $ docker network create web
    
  7. Launch the services with docker-compose

    $ docker-compose up
    

    You may need to wait 2 minutes here before the database is initialized. If all goes well, you should be able to point your browser to localhost:7831 and see the landing page of the application. Stop the service before continuing to the next step (by pressing Ctrl+C).

  8. Once you have the app running, you'll want to create an admin account so you can upload datasets, manage tasks and users, and download annotation results. This can be done using the following command:

    $ docker-compose run --entrypoint 'flask admin add --auto-confirm-email' annotatechange
    
  9. As admin, upload ALL demo datasets (included in demo_data) through: Admin Panel -> Add dataset. You should then be able to follow the introduction to the app (available from the landing page).

  10. After completing the instruction, you then will be able to access the user interface ("Home") to annotate your own time series.

Notes

This codebase is provided "as is". If you find any problems, please raise an issue on GitHub.

The code is licensed under the MIT License.

This code was written by Gertjan van den Burg with helpful comments provided by Chris Williams.

Some implementation details

Below are some thoughts that may help make sense of the codebase.

  • AnnotateChange is a web application build on the Flask framework. See this excellent tutorial for an introduction to Flask. The flask.sh shell script loads the appropriate environment variables and runs the application.

  • The application handles user management and is centered around the idea of a "task" which links a particular user to a particular time series to annotate.

  • An admin role is available, and the admin user can manually assign and delete tasks as well as add/delete users, datasets, etc. The admin user is created using the cli (see the Getting Started documentation above).

  • All datasets must adhere to a specific dataset schema (see utils/dataset_schema.json). See the files in [demo_data] for examples, as well as those in TCPD.

  • Annotations are stored in the database using 0-based indexing. Tasks are assigned on the fly when a user requests a time series to annotate (see utils/tasks.py).

  • Users can only begin annotating when they have successfully passed the introduction.

  • Configuration of the app is done through environment variables, see the .env.example file for an example.

  • Docker is used for deployment (see the deployment documentation in docs), and Traefik is used for SSL, etc.

  • The time series graph is plotted using d3.js.

Owner
The Alan Turing Institute
The UK's national institute for data science and artificial intelligence.
The Alan Turing Institute
Code for our SIGIR 2022 accepted paper : P3 Ranker: Mitigating the Gaps between Pre-training and Ranking Fine-tuning with Prompt-based Learning and Pre-finetuning

P3 Ranker Implementation for our SIGIR2022 accepted paper: P3 Ranker: Mitigating the Gaps between Pre-training and Ranking Fine-tuning with Prompt-bas

14 Jan 04, 2023
Documentation generator for C++ based on Doxygen and mosra/m.css.

mosra/m.css is a Doxygen-based documentation generator that significantly improves on Doxygen's default output by controlling some of Doxygen's more unruly options, supplying it's own slick HTML+CSS

Mark Gillard 109 Dec 07, 2022
Project created to help beginner programmers to study, despite the lack of internet!

Project created to help beginner programmers to study, despite the lack of internet!

Dev4Dev 2 Oct 25, 2021
Assignments from Launch X's python introduction course

Launch X - On Boarding Assignments from Launch X's Python Introduction Course Explore the docs » Report Bug · Request Feature Table of Contents About

Javier Méndez 0 Mar 15, 2022
A course-planning, course-map rendering and GPA-calculation web service, designed for the SFU (Simon Fraser University) student.

SFU Course Planner What is the overall goal of the project (i.e. what does it do, or what problem is it solving)? As the title suggests, this project

Ash Peng 1 Oct 21, 2021
Leetcode Practice

LeetCode Practice Description This is my LeetCode Practice. Visit LeetCode Website for detailed question description. The code in this repository has

Leo Hsieh 75 Dec 27, 2022
Python Advanced --- numpy, decorators, networking

Python Advanced --- numpy, decorators, networking (and more?) Hello everyone 👋 This is the project repo for the "Python Advanced - ..." introductory

Andreas Poehlmann 2 Nov 05, 2021
A simple USI Shogi Engine written in python using python-shogi.

Revengeshogi My attempt at creating a USI Shogi Engine in python using python-shogi. Current State of Engine Currently only generating random moves us

1 Jan 06, 2022
Data science Python notebooks: Deep learning (TensorFlow, Theano, Caffe, Keras), scikit-learn, Kaggle, big data (Spark, Hadoop MapReduce, HDFS), matplotlib, pandas, NumPy, SciPy, Python essentials, AWS, and various command lines.

Data science Python notebooks: Deep learning (TensorFlow, Theano, Caffe, Keras), scikit-learn, Kaggle, big data (Spark, Hadoop MapReduce, HDFS), matplotlib, pandas, NumPy, SciPy, Python essentials, A

Donne Martin 24.5k Jan 09, 2023
A collection of lecture notes, drawings, flash cards, mind maps, scripts

Neuroanatomy A collection of lecture notes, drawings, flash cards, mind maps, scripts and other helpful resources for the course "Functional Organizat

Georg Reich 3 Sep 21, 2022
Netbox Dns is a netbox plugin for managing zone, nameserver and record inventory.

Netbox DNS Netbox Dns is a netbox plugin for managing zone, nameserver and record inventory. Features Manage zones (domains) you have. Manage nameserv

Aurora Research Lab 155 Jan 06, 2023
advance python series: Data Classes, OOPs, python

Working With Pydantic - Built-in Data Process ========================== Normal way to process data (reading json file): the normal princiople, it's f

Phung Hưng Binh 1 Nov 08, 2021
Exercism exercises in Python.

Exercism exercises in Python.

Exercism 1.3k Jan 04, 2023
AiiDA plugin for the HyperQueue metascheduler.

aiida-hyperqueue WARNING: This plugin is still in heavy development. Expect bugs to pop up and the API to change. AiiDA plugin for the HyperQueue meta

AiiDA team 3 Jun 19, 2022
Explorative Data Analysis Guidelines

Explorative Data Analysis Get data into a usable format! Find out if the following predictive modeling phase will be successful! Combine everything in

Florian Rohrer 18 Dec 26, 2022
A pluggable API specification generator. Currently supports the OpenAPI Specification (f.k.a. the Swagger specification)..

apispec A pluggable API specification generator. Currently supports the OpenAPI Specification (f.k.a. the Swagger specification). Features Supports th

marshmallow-code 1k Jan 01, 2023
Modified fork of CPython's ast module that parses `# type:` comments

Typed AST typed_ast is a Python 3 package that provides a Python 2.7 and Python 3 parser similar to the standard ast library. Unlike ast up to Python

Python 217 Dec 06, 2022
A simple document management REST based API for collaboratively interacting with documents

documan_api A simple document management REST based API for collaboratively interacting with documents.

Shahid Yousuf 1 Jan 22, 2022
Data science on SDGs - Udemy Online Course Material: Data Science on Sustainable Development Goals

Data Science on Sustainable Development Goals (SDGs) Udemy Online Course Material: Data Science on Sustainable Development Goals https://bit.ly/data_s

Frank Kienle 1 Jan 04, 2022