A simple flask application to collect annotations for the Turing Change Point Dataset, a benchmark dataset for change point detection algorithms

Overview

AnnotateChange

Welcome to the repository of the "AnnotateChange" application. This application was created to collect annotations of time series data in order to construct the Turing Change Point Dataset (TCPD). The TCPD is a dataset of real-world time series used to evaluate change point detection algorithms. For the change point detection benchmark that was created using this dataset, see the Turing Change Point Detection Benchmark repository.

Any work that uses this repository should cite our paper: Van den Burg & Williams - An Evaluation of Change Point Detection Algorithms (2020). You can use the following BibTeX entry:

@article{vandenburg2020evaluation,
        title={An Evaluation of Change Point Detection Algorithms},
        author={{Van den Burg}, G. J. J. and Williams, C. K. I.},
        journal={arXiv preprint arXiv:2003.06222},
        year={2020}
}

Here's a screenshot of what the application looks like during the annotation process:

screenshot of 
AnnotateChange

Some of the features of AnnotateChange include:

  • Admin panel to add/remove datasets, add/remove annotation tasks, add/remove users, and inspect incoming annotations.

  • Basic user management: authentication, email confirmation, forgotten password, automatic log out after inactivity, etc. Users are only allowed to register using an email address from an approved domain.

  • Task assignment of time series to user is done on the fly, ensuring no user ever annotates the same dataset twice, and prioritising datasets that are close to a desired number of annotations.

  • Interactive graph of a time series that supports pan and zoom, support for multidimensional time series.

  • Mandatory "demo" to onboard the user to change point annotation.

  • Backup of annotations to the admin via email.

  • Time series datasets are verified upon upload acccording to a strict schema.

Getting Started

Below are instructions for setting up the application for local development and for running the application with Docker.

Basic

AnnotateChange can be launched quickly for local development as follows:

  1. Clone the repo

    $ git clone https://github.com/alan-turing-institute/AnnotateChange
    $ cd AnnotateChange
    
  2. Set up a virtual environment and install dependencies (requires Python 3.7+)

    $ sudo apt-get install -y python3-venv # assuming Ubuntu
    $ pip install wheel
    $ python3 -m venv ./venv
    $ source ./venv/bin/activate
    $ pip install -r requirements.txt
    
  3. Create local development environment file

    $ cp .env.example .env.development
    $ sed -i 's/DB_TYPE=mysql/DB_TYPE=sqlite3/g' .env.development
    

    With DB_TYPE=sqlite3, we don't have to deal with MySQL locally.

  4. Initialize the database (this will be a local app.db file).

    $ ./flask.sh db upgrade
    
  5. Create the admin user account

    $ ./flask.sh admin add --auto-confirm-email
    

    The --auto-confirm-email flag automatically marks the email address of the admin user as confirmed. This is mostly useful in development environments when you don't have a mail address set up yet.

  6. Run the application

    $ ./flask.sh run
    

    This should tell you where its running, probably localhost:5000. You should be able to log in with the admin account you've just created.

  7. As admin, upload ALL demo datasets (included in demo_data) through: Admin Panel -> Add dataset. You should then be able to follow the introduction to the app (available from the landing page).

  8. After completing the instruction, you then will be able to access the user interface ("Home") to annotate your own time series.

Docker

To use AnnotateChange locally using Docker, follow the steps below. For a full-fledged installation on a server, see the deployment instructions.

  1. Install docker and docker-compose.

  2. Clone this repository and switch to it:

    $ git clone https://github.com/alan-turing-institute/AnnotateChange
    $ cd AnnotateChange
    
  3. Build the docker image:

    $ docker build -t gjjvdburg/annotatechange .
    
  4. Create the directory for persistent MySQL database storage:

    $ mkdir -p persist/{instance,mysql}
    $ sudo chown :1024 persist/instance
    $ chmod 775 persist/instance
    $ chmod g+s persist/instance
    
  5. Copy the environment variables file:

    $ cp .env.example .env
    

    Some environment variables can be adjusted if needed. For example, when moving to production, you'll need to change the FLASK_ENV variable accordingly. Please also make sure to set a proper SECRET_KEY and AC_MYSQL_PASSWORD (= MYSQL_PASSWORD). You'll also need to configure a mail account so the application can send out emails for registration etc. This is what the variables prefixed with MAIL_ are for. The ADMIN_EMAIL is likely your own email, it is used when the app encounters an error and to send backups of the annotation records. You can limit the email domains users can use with the USER_EMAIL_DOMAINS variable. See the config.py file for more info on the configuration options.

  6. Create a local docker network for communiation between the AnnotateChange app and the MySQL server:

    $ docker network create web
    
  7. Launch the services with docker-compose

    $ docker-compose up
    

    You may need to wait 2 minutes here before the database is initialized. If all goes well, you should be able to point your browser to localhost:7831 and see the landing page of the application. Stop the service before continuing to the next step (by pressing Ctrl+C).

  8. Once you have the app running, you'll want to create an admin account so you can upload datasets, manage tasks and users, and download annotation results. This can be done using the following command:

    $ docker-compose run --entrypoint 'flask admin add --auto-confirm-email' annotatechange
    
  9. As admin, upload ALL demo datasets (included in demo_data) through: Admin Panel -> Add dataset. You should then be able to follow the introduction to the app (available from the landing page).

  10. After completing the instruction, you then will be able to access the user interface ("Home") to annotate your own time series.

Notes

This codebase is provided "as is". If you find any problems, please raise an issue on GitHub.

The code is licensed under the MIT License.

This code was written by Gertjan van den Burg with helpful comments provided by Chris Williams.

Some implementation details

Below are some thoughts that may help make sense of the codebase.

  • AnnotateChange is a web application build on the Flask framework. See this excellent tutorial for an introduction to Flask. The flask.sh shell script loads the appropriate environment variables and runs the application.

  • The application handles user management and is centered around the idea of a "task" which links a particular user to a particular time series to annotate.

  • An admin role is available, and the admin user can manually assign and delete tasks as well as add/delete users, datasets, etc. The admin user is created using the cli (see the Getting Started documentation above).

  • All datasets must adhere to a specific dataset schema (see utils/dataset_schema.json). See the files in [demo_data] for examples, as well as those in TCPD.

  • Annotations are stored in the database using 0-based indexing. Tasks are assigned on the fly when a user requests a time series to annotate (see utils/tasks.py).

  • Users can only begin annotating when they have successfully passed the introduction.

  • Configuration of the app is done through environment variables, see the .env.example file for an example.

  • Docker is used for deployment (see the deployment documentation in docs), and Traefik is used for SSL, etc.

  • The time series graph is plotted using d3.js.

Owner
The Alan Turing Institute
The UK's national institute for data science and artificial intelligence.
The Alan Turing Institute
Resource hub for Obsidian resources.

Obsidian Community Vault Welcome! This is an experimental vault that is maintained by the Obsidian community. For best results we recommend downloadin

Obsidian Community 320 Jan 02, 2023
This is a tool to make easier brawl stars modding using csv manipulation

Brawler Maker : Modding Tool for Brawl Stars This is a tool to make easier brawl stars modding using csv manipulation if you want to support me, just

6 Nov 16, 2022
Comprehensive Python Cheatsheet

Comprehensive Python Cheatsheet Download text file, Buy PDF, Fork me on GitHub or Check out FAQ. Contents 1. Collections: List, Dictionary, Set, Tuple

Jefferson 1 Jan 23, 2022
Essential Document Generator

Essential Document Generator Dead Simple Document Generation Whether it's testing database performance or a new web interface, we've all needed a dead

Shane C Mason 59 Nov 11, 2022
Coursera learning course Python the basics. Programming exercises and tasks

HSE_Python_the_basics Welcome to BAsics programming Python! You’re joining thousands of learners currently enrolled in the course. I'm excited to have

PavelRyzhkov 0 Jan 05, 2022
ACPOA plugin creation helper

ACPOA Plugin What is ACPOA ACPOA is the acronym for "Application Core for Plugin Oriented Applications". It's a tool to create flexible and extendable

Leikt Sol'Reihin 1 Oct 20, 2021
🐱‍🏍 A curated list of awesome things related to Hugo themes.

awesome-hugo-themes Automated deployment @ 2021-10-12 06:24:07 Asia/Shanghai &sorted=updated Theme Author License GitHub Stars Updated Blonde wamo MIT

13 Dec 12, 2022
Python-samples - This project is to help someone need some practices when learning python language

Python-samples - This project is to help someone need some practices when learning python language

Gui Chen 0 Feb 14, 2022
Modified fork of CPython's ast module that parses `# type:` comments

Typed AST typed_ast is a Python 3 package that provides a Python 2.7 and Python 3 parser similar to the standard ast library. Unlike ast up to Python

Python 217 Dec 06, 2022
Automatic links from code examples to reference documentation

sphinx-codeautolink Automatic links from Python code examples to reference documentation at the flick of a switch! sphinx-codeautolink analyses the co

Felix Hildén 41 Dec 17, 2022
The tutorial is a collection of many other resources and my own notes

Why we need CTC? --- looking back on history 1.1. About CRNN 1.2. from Cross Entropy Loss to CTC Loss Details about CTC 2.1. intuition: forward algor

手写AI 7 Sep 19, 2022
Sphinx-performance - CLI tool to measure the build time of different, free configurable Sphinx-Projects

CLI tool to measure the build time of different, free configurable Sphinx-Projec

useblocks 11 Nov 25, 2022
the project for the most brutal and effective language learning technique

- "The project for the most brutal and effective language learning technique" (c) Alex Kay The langflow project was created especially for language le

Alexander Kaigorodov 7 Dec 26, 2021
PyPresent - create slide presentations from notes

PyPresent Create slide presentations from notes Add some formatting to text file

1 Jan 06, 2022
Python script to generate Vale linting rules from word usage guidance in the Red Hat Supplementary Style Guide

ssg-vale-rules-gen Python script to generate Vale linting rules from word usage guidance in the Red Hat Supplementary Style Guide. These rules are use

Vale at Red Hat 1 Jan 13, 2022
Plotting and analysis tools for ARTIS simulations

Artistools Artistools is collection of plotting, analysis, and file format conversion tools for the ARTIS radiative transfer code. Installation First

ARTIS Monte Carlo Radiative Transfer 8 Nov 07, 2022
Quick tutorial on orchest.io that shows how to build multiple deep learning models on your data with a single line of code using python

Deep AutoViML Pipeline for orchest.io Quickstart Build Deep Learning models with a single line of code: deep_autoviml Deep AutoViML helps you build te

Ram Seshadri 6 Oct 02, 2022
A module filled with many useful functions and modules in various subjects.

Usefulpy Check out the Usefulpy site Usefulpy site is not always up to date Download and Import download and install with with pip download usefulpyth

Austin Garcia 1 Dec 28, 2021
Searches a document for hash tags. Support multiple natural languages. Works in various contexts.

ht-getter Searches a document for hash tags. Supports multiple natural languages. Works in various contexts. This package uses a non-regex approach an

Rairye 1 Mar 01, 2022
A document format conversion service based on Pandoc.

reformed Document format conversion service based on Pandoc. Usage The API specification for the Reformed server is as follows: GET /api/v1/formats: L

David Lougheed 3 Jul 18, 2022