Scientific color maps and standardization tools

Related tags

Miscellaneousscicomap
Overview

drawing

buy me caffeine

Scientific color maps

Blog post

Scicomap Medium blog post (free)

Installation

pip install scicomap

Introduction

Scicomap is a package that provides scientific color maps and tools to standardize your favourite color maps if you don't like the built-in ones. Scicomap currently provides sequential, bi-sequential, diverging, circular, qualitative and miscellaneous color maps. You can easily draw examples, compare the rendering, see how colorblind people will perceive the color maps. I will illustrate the scicomap capabilities below.

This package is heavily based on the Event Horyzon Plot package and uses good color maps found in the the python portage of the Fabio Crameri, cmasher, palettable, colorcet and cmocean

Motivation

The accurate representation of data is essential. Many common color maps distort data through uneven colour gradients and are often unreadable to those with color-vision deficiency. An infamous example is the jet color map. These color maps do not render all the information you want to illustrate or even worse render false information through artefacts. Scientist or not, your goal is to communicate visual information in the most accurate and appealing fashion. Moreover, do not overlook colour-vision deficiency, which represents 8% of the (Caucasian) male population.

Color spaces

Perceptual uniformity is the idea that Euclidean distance between colors in color space should match human color perception distance judgements. For example, a blue and red that are at a distance d apart should look as discriminable as green and purple that are at a distance d apart. Scicomap uses the CAM02-UCS color space (Uniform Colour Space). Its three coordinates are usually denoted by J', a', and b'. And its cylindrical coordinates are J', C', and h'. The perceptual color space Jab is similar to Lab. However, Jab uses an updated color appearance model that in theory provides greater precision for discriminability measurements.

  • Lightness: also known as value or tone, is a representation of a color's brightness
  • Chroma: the intrinsic difference between a color and gray of an object
  • Hue: the degree to which a stimulus can be described as similar to or different from stimuli that are described as red, green, blue, and yellow

Encoding information

  • Lightness J': for a scalar value, intensity. It must vary linearly with the physical quantity
  • hue h' can encode an additional physical quantity, the change of hue should be linearly proportional to the quantity. The hue h' is also ideal in making an image more attractive without interfering with the representation of pixel values.
  • chroma is less recognizable and should not be used to encode physical information

Color map uniformization

Following the references and the theories, the uniformization is performed by

  • Making the color map linear in J'
  • Lifting the color map (making it lighter, i.e. increasing the minimal value of J')
  • Symmetrizing the chroma to avoid further artefacts
  • Avoid kinks and edges in the chroma curve
  • Bitonic symmetrization or not

Scicomap

Choosing the right type of color maps

Scicomap provides a bunch of color maps for different applications. The different types of color map are

import scicomap as sc
sc_map = sc.SciCoMap()
sc_map.get_ctype()
dict_keys(['diverging', 'sequential', 'multi-sequential', 'circular', 'miscellaneous', 'qualitative'])

I'll refer to the The misuse of colour in science communication for choosing the right scientific color map

Get the matplotlib cmap

plt_cmap_obj = sc_map.get_mpl_color_map()

Choosing the color map for a given type

Get the color maps for a given type

sc_map = sc.ScicoSequential()
sc_map.get_color_map_names()
dict_keys(['afmhot', 'amber', 'amber_r', 'amp', 'apple', 'apple_r', 'autumn', 'batlow', 'bilbao', 'bilbao_r', 'binary', 'Blues', 'bone', 'BuGn', 'BuPu', 'chroma', 'chroma_r', 'cividis', 'cool', 'copper', 'cosmic', 'cosmic_r', 'deep', 'dense', 'dusk', 'dusk_r', 'eclipse', 'eclipse_r', 'ember', 'ember_r', 'fall', 'fall_r', 'gem', 'gem_r', 'gist_gray', 'gist_heat', 'gist_yarg', 'GnBu', 'Greens', 'gray', 'Greys', 'haline', 'hawaii', 'hawaii_r', 'heat', 'heat_r', 'hot', 'ice', 'inferno', 'imola', 'imola_r', 'lapaz', 'lapaz_r', 'magma', 'matter', 'neon', 'neon_r', 'neutral', 'neutral_r', 'nuuk', 'nuuk_r', 'ocean', 'ocean_r', 'OrRd', 'Oranges', 'pink', 'plasma', 'PuBu', 'PuBuGn', 'PuRd', 'Purples', 'rain', 'rainbow', 'rainbow-sc', 'rainbow-sc_r', 'rainforest', 'rainforest_r', 'RdPu', 'Reds', 'savanna', 'savanna_r', 'sepia', 'sepia_r', 'speed', 'solar', 'spring', 'summer', 'tempo', 'thermal', 'thermal_r', 'thermal-2', 'tokyo', 'tokyo_r', 'tropical', 'tropical_r', 'turbid', 'turku', 'turku_r', 'viridis', 'winter', 'Wistia', 'YlGn', 'YlGnBu', 'YlOrBr', 'YlOrRd'])

Use a custom color map

As long as the color map is a matplotlib.colors.Colormap, matplotlib.colors.LinearSegmentedColormap or matplotlib.colors.ListedColormap object, you can pass it in the different classes.

import scicomap as sc
import matplotlib.pyplot as plt

# the thing that should not be
ugly_jet = plt.get_cmap("jet")
sc_map =  sc.ScicoMiscellaneous(cmap=ugly_jet)
f=sc_map.assess_cmap(figsize=(22,10))

Assessing a color map

In order to assess if a color map should be corrected or not, scicomap provides a way to quickly check if the lightness is linear, how asymmetric and smooth is the chroma and how the color map renders for color-deficient users. I will illustrate some of the artefacts using classical images, as the pyramid and specific functions for each kind of color map.

An infamous example

import scicomap as sc
import matplotlib.pyplot as plt

# the thing that should not be
ugly_jet = plt.get_cmap("jet")
sc_map =  sc.ScicoMiscellaneous(cmap=ugly_jet)
f=sc_map.assess_cmap(figsize=(22,10))

Clearly, the lightness is not linear, has edges and kinks. The chroma is not smooth and asymmetrical. See the below illustration to see how bad and how many artefacts the jet color map introduces

Correcting a color map

Sequential color map

Let's assess the built-in color map hawaii without correction:

sc_map = sc.ScicoSequential(cmap='hawaii')
f=sc_map.assess_cmap(figsize=(22,10))

The color map seems ok, however, the lightness is not linear and the chroma is asymmetrical even if smooth. Those small defects introduce artefact in the information rendering, as we can visualize using the following example

f=sc_map.draw_example()

We can clearly see the artefacts, especially for the pyramid for which our eyes should only pick out the corners in the pyramid (ideal situation). Those artefacts are even more striking for color-deficient users (this might not always be the case). Hopefully, scicomap provides an easy way to correct those defects:

# fixing the color map, using the same minimal lightness (lift=None), 
# not normalizing to bitone and 
# smoothing the chroma
sc_map.unif_sym_cmap(lift=None, 
                     bitonic=False, 
                     diffuse=True)

# re-assess the color map after fixing it                     
f=sc_map.assess_cmap(figsize=(22,10))

After fixing the color map, the artefacts are less present

Get the color map object

plt_cmap_obj = sc_map.get_mpl_color_map()

Diverging color map

We can perform exactly the same fix for diverging, circular, miscellaneous and qualitative color maps. Let's take a diverging color map as an illustrative example:

div_map = sc.ScicoDiverging(cmap='vanimo')
f=div_map.assess_cmap(figsize=(22,10))

the original color map is as follows

which renders as

The larger dark transition might help to distinguish the positive and negative regions but introduces artefacts (pyramids, second column panels). By correcting the color map, we remove the smooth dark transition by a sharp one and we "lift" the dark part to make it a bit brighter. Human eyes are more able to differentiate the lighter colors.

div_map = sc.ScicoDiverging(cmap='vanimo')
div_map.unif_sym_cmap(lift=25, 
                      bitonic=False, 
                      diffuse=True)
f=div_map.assess_cmap(figsize=(22,10))

which render as

Use with matplotlib

Use a corrected colormap in a matplotlib figure

import matplotlib.pyplot as plt
import matplotlib as mpl
import scicomap as sc
from scicomap.utils import _fn_with_roots

# load the color map
div_map = sc.ScicoDiverging(cmap='watermelon')

# correct the colormap
div_map.unif_sym_cmap(lift=15, 
                      bitonic=False, 
                      diffuse=True)

# get the fixed color map
fixed_cmap = div_map.get_mpl_color_map()
print(type(fixed_cmap))

# use it as you like
im = _fn_with_roots()
norm = mpl.colors.CenteredNorm()
divnorm = mpl.colors.TwoSlopeNorm(vmin=-1, vcenter=0, vmax=1.25)
fig = plt.figure(figsize=(3,3), facecolor="white")
ax = fig.add_subplot(1, 1, 1, facecolor="white")
pos = ax.imshow(im, cmap=fixed_cmap, aspect="auto", norm=divnorm)
fig.colorbar(pos, ax=ax);

Correct a matplotlib colormap

import matplotlib.pyplot as plt
import matplotlib as mpl
import scicomap as sc
from scicomap.utils import _fn_with_roots

# load the color map
mpl_cmap_obj = plt.get_cmap("PRGn")
div_map = sc.ScicoDiverging(cmap=mpl_cmap_obj)

# correct the colormap
div_map.unif_sym_cmap(lift=None, 
                      bitonic=False, 
                      diffuse=True)

# get the fixed color map
fixed_cmap = div_map.get_mpl_color_map()
print(type(fixed_cmap))

# use it as you like
im = _fn_with_roots()
norm = mpl.colors.CenteredNorm()
divnorm = mpl.colors.TwoSlopeNorm(vmin=-1, vcenter=0, vmax=1.25)
fig = plt.figure(figsize=(3,3), facecolor="white")
ax = fig.add_subplot(1, 1, 1, facecolor="white")
pos = ax.imshow(im, cmap=fixed_cmap, aspect="auto", norm=divnorm)
fig.colorbar(pos, ax=ax);

Comparing color maps

You can easily compare, raw or corrected, color maps using a picture of your choice

Color-defiency rendering

Bearing in mind that +- 8% of males are color-deficient, you can visualize the rendering of any colormap for different kind of deficiencies.

c_l =  ["cividis", "inferno", "magma", "plasma", "viridis"]
f = sc.plot_colorblind_vision(ctype='sequential', 
                              cmap_list=c_l, 
                              figsize=(30, 4), 
                              n_colors=11, 
                              facecolor="black")

Sequential color maps

The built-in picture is coming from First M87 Event Horizon Telescope Results. IV. Imaging the Central Supermassive Black Hole as the main part of Scicomap is built upon the EHT visualization library.

f = sc.compare_cmap(image="grmhd", 
                    ctype='sequential', 
                    ncols=15, 
                    uniformize=True, 
                    symmetrize=True, 
                    unif_kwargs={'lift': 20}, 
                    sym_kwargs={'bitonic': False, 'diffuse': True})

returning

Diverging color maps

Comparing the diverging color maps using a vortex image

f = sc.compare_cmap(image="vortex", 
                    ctype='diverging', 
                    ncols=15, 
                    uniformize=True, 
                    symmetrize=True, 
                    unif_kwargs={'lift': None}, 
                    sym_kwargs={'bitonic': False, 'diffuse': True})

Circular color maps

Comparing circular/phase color maps using a complex function

f = sc.compare_cmap(image="phase", 
                    ctype='circular', 
                    ncols=15, 
                    uniformize=True, 
                    symmetrize=True, 
                    unif_kwargs={'lift': None}, 
                    sym_kwargs={'bitonic': False, 'diffuse': True})

All the built-in color maps

Sequential

sc.plot_colormap(ctype='sequential', 
                 cmap_list='all', 
                 figsize=None, 
                 n_colors=5, 
                 facecolor="black", 
                 uniformize=True, 
                 symmetrize=False, 
                 unif_kwargs=None, 
                 sym_kwargs=None)

Diverging

Mutli-sequential

Miscellaneous

Circular

Qualitative

sc.plot_colormap(ctype='qualitative', 
                 cmap_list='all', 
                 figsize=None, 
                 n_colors=5, 
                 facecolor="black", 
                 uniformize=False, 
                 symmetrize=False, 
                 unif_kwargs=None, 
                 sym_kwargs=None)

References

Changes log

0.3

  • Add a section "how to use with matplotlib"
  • [Bug] Center diverging color map in examples

0.2

  • [Bug] Fix typo in chart titles

0.1

  • First version
You might also like...
A new mini-batch framework for optimal transport in deep generative models, deep domain adaptation, approximate Bayesian computation, color transfer, and gradient flow.

BoMb-OT Python3 implementation of the papers On Transportation of Mini-batches: A Hierarchical Approach and Improving Mini-batch Optimal Transport via

Configure request params such as text, color, size etc. And then download the image
Configure request params such as text, color, size etc. And then download the image

Configure request params such as text, color, size etc. And then download the image

A Tandy Color Computer 1, 2, and 3 assembler written in Python

CoCo Assembler and File Utility Table of Contents What is it? Requirements License Installing Assembler Assembler Usage Input File Format Print Symbol

A simple single-color identicon generator

Identicons What are identicons? Setup: git clone https://github.com/vjdad4m/identicons.git cd identicons pip3 install -r requirements.txt chmod +x

The goal of this program was to find the most common color in my living room.

The goal of this program was to find the most common color in my living room. I found a dataset online with colors names and their corr

A lighweight screen color picker tool
A lighweight screen color picker tool

tkpick A lighweigt screen color picker tool Availability Only GNU/Linux 🐧 Installing Install via pip (No auto-update): [sudo] pip install tkpick Usa

Coursework project for DIP class. The goal is to use vision to guide the Dashgo robot through two traffic cones in bright color.

Coursework project for DIP class. The goal is to use vision to guide the Dashgo robot through two traffic cones in bright color.

Convert text with ANSI color codes to HTML or to LaTeX.

Convert text with ANSI color codes to HTML or to LaTeX.

It is a Blender Tool which can convert the Object Data Attributes in face corner to the UVs or Vertex Color.

Blender_ObjectDataAttributesConvertTool It is a Blender Tool which can convert the Object Data Attributes in face corner to the UVs or Vertex Color. D

Releases(v0.4)
Owner
Thomas Bury
Physicist by passion and training, Data Scientist for a living (ok it's fun too), interdisciplinary by conviction. Human Bender for some topics.
Thomas Bury
Basic Clojure REPL for Sublime Text

Basic Clojure REPL for Sublime Text Goals: Decomplected: just REPL, nothing more Zero dependencies: works directly with pREPL Compact: Display code ev

Nikita Prokopov 23 Dec 24, 2021
Incident Response Process and Playbooks | Goal: Playbooks to be Mapped to MITRE Attack Techniques

PURPOSE OF PROJECT That this project will be created by the SOC/Incident Response Community Develop a Catalog of Incident Response Playbook for every

Austin Songer 987 Jan 02, 2023
Some shitty programs just to brush up on my understanding of binary conversions.

Binary Converters Some shitty programs just to brush up on my understanding of binary conversions. Supported conversions formats = "unsigned-binary" |

Tim 2 Jan 09, 2022
Automation in socks label validation

This is a project for socks card label validation where the socks card is validated comparing with the correct socks card whose coordinates are stored in the database. When the test socks card is com

1 Jan 19, 2022
Gives you more advanced math in python.

AdvancedPythonMath Gives you more advanced math in python. Functions .simplex(args: {number}) .circ(args: {raidus}) .pytha(args: {leg_a + leg_2}) .slo

Voidy Devleoper 1 Dec 25, 2021
A middle-to-high level algorithm book designed with coding interview at heart!

Hands-on Algorithmic Problem Solving A one-stop coding interview prep book! About this book In short, this is a middle-to-high level algorithm book de

Li Yin 1.8k Jan 02, 2023
Remote Worker

Remote Worker Separation of Responsibilities There are several reasons to move some processing out of the main code base for security or performance:

V2EX 69 Dec 05, 2022
SimplePyBLE - Python bindings for SimpleBLE

The ultimate fully-fledged cross-platform Python BLE library, designed for simplicity and ease of use.

Open Bluetooth Toolbox 27 Aug 28, 2022
Block the annoying Token Grabbers on your discord

General We have seen that in the last time many discord servers are infected by fake discord nitro links we want to put an end to this and have develo

BadTiger Network 2 Jul 16, 2022
Very simple encoding scheme that will encode data as a series of OwOs or UwUs.

OwO Encoder Very simple encoding scheme that will encode data as a series of OwOs or UwUs. The encoder is a simple state machine. Still needs a decode

1 Nov 15, 2021
A simple wrapper for joy library

Joy CodeGround A simple wrapper for joy library to render joy sketches in browser using vs code, (or in other words, for those who are allergic to Jup

rijfas 9 Sep 08, 2022
Library for Memory Trace Statistics in Python

Memory Search Library for Memory Trace Statistics in Python The library uses tracemalloc as a core module, which is why it is only available for Pytho

Memory Search 1 Dec 20, 2021
In this project , I play with the YouTube data API and extract trending videos in Nigeria on a particular day

YouTubeTrendingVideosAnalysis In this project , I played with the YouTube data API and extracted trending videos in Nigeria on a particular day. This

1 Jan 11, 2022
Script em python, utilizando PySimpleGUI, para a geração de arquivo txt a ser importado no sistema de Bilhetagem Eletrônica da RioCard, no Estado do Rio de Janeiro.

pedido-vt-riocard Script em python, utilizando PySimpleGUI, para a geração de arquivo txt a ser importado no sistema de Bilhetagem Eletrônica da RioCa

Carlos Bruno Gomes 1 Dec 01, 2021
All Assignments , Test , Quizzes and Exams with solutions from NIT Patna B.Tech CSE 5th Semester.

A 🌟 to repo would be delightful, just do it ✔️ it is inexpensive. All Assignments , Quizzes and Exam papers at one place with clean and elegant solut

LakhanKumawat ᵖ⁺ 16 Dec 05, 2022
Site de gestion de cave à vin utilisant une BDD manipulée avec SQLite3 via Python

cave-vin Site de gestion de cave à vin utilisant une bdd manipulée avec MySQL ACCEDER AU SITE : Pour accéder à votre cave vous aurez besoin de lancer

Elouann Lucas 0 Jul 05, 2022
Animation picker for Audodesk Maya 2017 (or higher)

Dreamwall Picker Animation picker for Audodesk Maya 2017 (or higher) Authors: Lionel Brouyère, Olivier Evers This tool is a fork of Hotbox Designer (L

DreamWall 93 Dec 21, 2022
Test pour savoir si je suis capable de paratger une lib avec le monde entier !!

Data analysis Document here the project: MLproject Description: Project Description Data Source: Type of analysis: Please document the project the bet

Lucas_Penarrubia 0 Jan 18, 2022
All you need to understand CRUD and MVP in DRF

Book-Store-API This an API which has been put in place just to make you order for books, upload books with price, image and all, pay and automtically

Oladipo Adesiyan 6 Jul 03, 2022
A Curated Collection of Awesome Python Scripts

A Curated Collection of Awesome Python Scripts that will make you go wow. This repository will help you in getting those green squares. Hop in and enjoy the journey of open source. 🚀

Prathima Kadari 248 Dec 31, 2022