Scientific color maps and standardization tools

Related tags

Miscellaneousscicomap
Overview

drawing

buy me caffeine

Scientific color maps

Blog post

Scicomap Medium blog post (free)

Installation

pip install scicomap

Introduction

Scicomap is a package that provides scientific color maps and tools to standardize your favourite color maps if you don't like the built-in ones. Scicomap currently provides sequential, bi-sequential, diverging, circular, qualitative and miscellaneous color maps. You can easily draw examples, compare the rendering, see how colorblind people will perceive the color maps. I will illustrate the scicomap capabilities below.

This package is heavily based on the Event Horyzon Plot package and uses good color maps found in the the python portage of the Fabio Crameri, cmasher, palettable, colorcet and cmocean

Motivation

The accurate representation of data is essential. Many common color maps distort data through uneven colour gradients and are often unreadable to those with color-vision deficiency. An infamous example is the jet color map. These color maps do not render all the information you want to illustrate or even worse render false information through artefacts. Scientist or not, your goal is to communicate visual information in the most accurate and appealing fashion. Moreover, do not overlook colour-vision deficiency, which represents 8% of the (Caucasian) male population.

Color spaces

Perceptual uniformity is the idea that Euclidean distance between colors in color space should match human color perception distance judgements. For example, a blue and red that are at a distance d apart should look as discriminable as green and purple that are at a distance d apart. Scicomap uses the CAM02-UCS color space (Uniform Colour Space). Its three coordinates are usually denoted by J', a', and b'. And its cylindrical coordinates are J', C', and h'. The perceptual color space Jab is similar to Lab. However, Jab uses an updated color appearance model that in theory provides greater precision for discriminability measurements.

  • Lightness: also known as value or tone, is a representation of a color's brightness
  • Chroma: the intrinsic difference between a color and gray of an object
  • Hue: the degree to which a stimulus can be described as similar to or different from stimuli that are described as red, green, blue, and yellow

Encoding information

  • Lightness J': for a scalar value, intensity. It must vary linearly with the physical quantity
  • hue h' can encode an additional physical quantity, the change of hue should be linearly proportional to the quantity. The hue h' is also ideal in making an image more attractive without interfering with the representation of pixel values.
  • chroma is less recognizable and should not be used to encode physical information

Color map uniformization

Following the references and the theories, the uniformization is performed by

  • Making the color map linear in J'
  • Lifting the color map (making it lighter, i.e. increasing the minimal value of J')
  • Symmetrizing the chroma to avoid further artefacts
  • Avoid kinks and edges in the chroma curve
  • Bitonic symmetrization or not

Scicomap

Choosing the right type of color maps

Scicomap provides a bunch of color maps for different applications. The different types of color map are

import scicomap as sc
sc_map = sc.SciCoMap()
sc_map.get_ctype()
dict_keys(['diverging', 'sequential', 'multi-sequential', 'circular', 'miscellaneous', 'qualitative'])

I'll refer to the The misuse of colour in science communication for choosing the right scientific color map

Get the matplotlib cmap

plt_cmap_obj = sc_map.get_mpl_color_map()

Choosing the color map for a given type

Get the color maps for a given type

sc_map = sc.ScicoSequential()
sc_map.get_color_map_names()
dict_keys(['afmhot', 'amber', 'amber_r', 'amp', 'apple', 'apple_r', 'autumn', 'batlow', 'bilbao', 'bilbao_r', 'binary', 'Blues', 'bone', 'BuGn', 'BuPu', 'chroma', 'chroma_r', 'cividis', 'cool', 'copper', 'cosmic', 'cosmic_r', 'deep', 'dense', 'dusk', 'dusk_r', 'eclipse', 'eclipse_r', 'ember', 'ember_r', 'fall', 'fall_r', 'gem', 'gem_r', 'gist_gray', 'gist_heat', 'gist_yarg', 'GnBu', 'Greens', 'gray', 'Greys', 'haline', 'hawaii', 'hawaii_r', 'heat', 'heat_r', 'hot', 'ice', 'inferno', 'imola', 'imola_r', 'lapaz', 'lapaz_r', 'magma', 'matter', 'neon', 'neon_r', 'neutral', 'neutral_r', 'nuuk', 'nuuk_r', 'ocean', 'ocean_r', 'OrRd', 'Oranges', 'pink', 'plasma', 'PuBu', 'PuBuGn', 'PuRd', 'Purples', 'rain', 'rainbow', 'rainbow-sc', 'rainbow-sc_r', 'rainforest', 'rainforest_r', 'RdPu', 'Reds', 'savanna', 'savanna_r', 'sepia', 'sepia_r', 'speed', 'solar', 'spring', 'summer', 'tempo', 'thermal', 'thermal_r', 'thermal-2', 'tokyo', 'tokyo_r', 'tropical', 'tropical_r', 'turbid', 'turku', 'turku_r', 'viridis', 'winter', 'Wistia', 'YlGn', 'YlGnBu', 'YlOrBr', 'YlOrRd'])

Use a custom color map

As long as the color map is a matplotlib.colors.Colormap, matplotlib.colors.LinearSegmentedColormap or matplotlib.colors.ListedColormap object, you can pass it in the different classes.

import scicomap as sc
import matplotlib.pyplot as plt

# the thing that should not be
ugly_jet = plt.get_cmap("jet")
sc_map =  sc.ScicoMiscellaneous(cmap=ugly_jet)
f=sc_map.assess_cmap(figsize=(22,10))

Assessing a color map

In order to assess if a color map should be corrected or not, scicomap provides a way to quickly check if the lightness is linear, how asymmetric and smooth is the chroma and how the color map renders for color-deficient users. I will illustrate some of the artefacts using classical images, as the pyramid and specific functions for each kind of color map.

An infamous example

import scicomap as sc
import matplotlib.pyplot as plt

# the thing that should not be
ugly_jet = plt.get_cmap("jet")
sc_map =  sc.ScicoMiscellaneous(cmap=ugly_jet)
f=sc_map.assess_cmap(figsize=(22,10))

Clearly, the lightness is not linear, has edges and kinks. The chroma is not smooth and asymmetrical. See the below illustration to see how bad and how many artefacts the jet color map introduces

Correcting a color map

Sequential color map

Let's assess the built-in color map hawaii without correction:

sc_map = sc.ScicoSequential(cmap='hawaii')
f=sc_map.assess_cmap(figsize=(22,10))

The color map seems ok, however, the lightness is not linear and the chroma is asymmetrical even if smooth. Those small defects introduce artefact in the information rendering, as we can visualize using the following example

f=sc_map.draw_example()

We can clearly see the artefacts, especially for the pyramid for which our eyes should only pick out the corners in the pyramid (ideal situation). Those artefacts are even more striking for color-deficient users (this might not always be the case). Hopefully, scicomap provides an easy way to correct those defects:

# fixing the color map, using the same minimal lightness (lift=None), 
# not normalizing to bitone and 
# smoothing the chroma
sc_map.unif_sym_cmap(lift=None, 
                     bitonic=False, 
                     diffuse=True)

# re-assess the color map after fixing it                     
f=sc_map.assess_cmap(figsize=(22,10))

After fixing the color map, the artefacts are less present

Get the color map object

plt_cmap_obj = sc_map.get_mpl_color_map()

Diverging color map

We can perform exactly the same fix for diverging, circular, miscellaneous and qualitative color maps. Let's take a diverging color map as an illustrative example:

div_map = sc.ScicoDiverging(cmap='vanimo')
f=div_map.assess_cmap(figsize=(22,10))

the original color map is as follows

which renders as

The larger dark transition might help to distinguish the positive and negative regions but introduces artefacts (pyramids, second column panels). By correcting the color map, we remove the smooth dark transition by a sharp one and we "lift" the dark part to make it a bit brighter. Human eyes are more able to differentiate the lighter colors.

div_map = sc.ScicoDiverging(cmap='vanimo')
div_map.unif_sym_cmap(lift=25, 
                      bitonic=False, 
                      diffuse=True)
f=div_map.assess_cmap(figsize=(22,10))

which render as

Use with matplotlib

Use a corrected colormap in a matplotlib figure

import matplotlib.pyplot as plt
import matplotlib as mpl
import scicomap as sc
from scicomap.utils import _fn_with_roots

# load the color map
div_map = sc.ScicoDiverging(cmap='watermelon')

# correct the colormap
div_map.unif_sym_cmap(lift=15, 
                      bitonic=False, 
                      diffuse=True)

# get the fixed color map
fixed_cmap = div_map.get_mpl_color_map()
print(type(fixed_cmap))

# use it as you like
im = _fn_with_roots()
norm = mpl.colors.CenteredNorm()
divnorm = mpl.colors.TwoSlopeNorm(vmin=-1, vcenter=0, vmax=1.25)
fig = plt.figure(figsize=(3,3), facecolor="white")
ax = fig.add_subplot(1, 1, 1, facecolor="white")
pos = ax.imshow(im, cmap=fixed_cmap, aspect="auto", norm=divnorm)
fig.colorbar(pos, ax=ax);

Correct a matplotlib colormap

import matplotlib.pyplot as plt
import matplotlib as mpl
import scicomap as sc
from scicomap.utils import _fn_with_roots

# load the color map
mpl_cmap_obj = plt.get_cmap("PRGn")
div_map = sc.ScicoDiverging(cmap=mpl_cmap_obj)

# correct the colormap
div_map.unif_sym_cmap(lift=None, 
                      bitonic=False, 
                      diffuse=True)

# get the fixed color map
fixed_cmap = div_map.get_mpl_color_map()
print(type(fixed_cmap))

# use it as you like
im = _fn_with_roots()
norm = mpl.colors.CenteredNorm()
divnorm = mpl.colors.TwoSlopeNorm(vmin=-1, vcenter=0, vmax=1.25)
fig = plt.figure(figsize=(3,3), facecolor="white")
ax = fig.add_subplot(1, 1, 1, facecolor="white")
pos = ax.imshow(im, cmap=fixed_cmap, aspect="auto", norm=divnorm)
fig.colorbar(pos, ax=ax);

Comparing color maps

You can easily compare, raw or corrected, color maps using a picture of your choice

Color-defiency rendering

Bearing in mind that +- 8% of males are color-deficient, you can visualize the rendering of any colormap for different kind of deficiencies.

c_l =  ["cividis", "inferno", "magma", "plasma", "viridis"]
f = sc.plot_colorblind_vision(ctype='sequential', 
                              cmap_list=c_l, 
                              figsize=(30, 4), 
                              n_colors=11, 
                              facecolor="black")

Sequential color maps

The built-in picture is coming from First M87 Event Horizon Telescope Results. IV. Imaging the Central Supermassive Black Hole as the main part of Scicomap is built upon the EHT visualization library.

f = sc.compare_cmap(image="grmhd", 
                    ctype='sequential', 
                    ncols=15, 
                    uniformize=True, 
                    symmetrize=True, 
                    unif_kwargs={'lift': 20}, 
                    sym_kwargs={'bitonic': False, 'diffuse': True})

returning

Diverging color maps

Comparing the diverging color maps using a vortex image

f = sc.compare_cmap(image="vortex", 
                    ctype='diverging', 
                    ncols=15, 
                    uniformize=True, 
                    symmetrize=True, 
                    unif_kwargs={'lift': None}, 
                    sym_kwargs={'bitonic': False, 'diffuse': True})

Circular color maps

Comparing circular/phase color maps using a complex function

f = sc.compare_cmap(image="phase", 
                    ctype='circular', 
                    ncols=15, 
                    uniformize=True, 
                    symmetrize=True, 
                    unif_kwargs={'lift': None}, 
                    sym_kwargs={'bitonic': False, 'diffuse': True})

All the built-in color maps

Sequential

sc.plot_colormap(ctype='sequential', 
                 cmap_list='all', 
                 figsize=None, 
                 n_colors=5, 
                 facecolor="black", 
                 uniformize=True, 
                 symmetrize=False, 
                 unif_kwargs=None, 
                 sym_kwargs=None)

Diverging

Mutli-sequential

Miscellaneous

Circular

Qualitative

sc.plot_colormap(ctype='qualitative', 
                 cmap_list='all', 
                 figsize=None, 
                 n_colors=5, 
                 facecolor="black", 
                 uniformize=False, 
                 symmetrize=False, 
                 unif_kwargs=None, 
                 sym_kwargs=None)

References

Changes log

0.3

  • Add a section "how to use with matplotlib"
  • [Bug] Center diverging color map in examples

0.2

  • [Bug] Fix typo in chart titles

0.1

  • First version
You might also like...
A new mini-batch framework for optimal transport in deep generative models, deep domain adaptation, approximate Bayesian computation, color transfer, and gradient flow.

BoMb-OT Python3 implementation of the papers On Transportation of Mini-batches: A Hierarchical Approach and Improving Mini-batch Optimal Transport via

Configure request params such as text, color, size etc. And then download the image
Configure request params such as text, color, size etc. And then download the image

Configure request params such as text, color, size etc. And then download the image

A Tandy Color Computer 1, 2, and 3 assembler written in Python

CoCo Assembler and File Utility Table of Contents What is it? Requirements License Installing Assembler Assembler Usage Input File Format Print Symbol

A simple single-color identicon generator

Identicons What are identicons? Setup: git clone https://github.com/vjdad4m/identicons.git cd identicons pip3 install -r requirements.txt chmod +x

The goal of this program was to find the most common color in my living room.

The goal of this program was to find the most common color in my living room. I found a dataset online with colors names and their corr

A lighweight screen color picker tool
A lighweight screen color picker tool

tkpick A lighweigt screen color picker tool Availability Only GNU/Linux 🐧 Installing Install via pip (No auto-update): [sudo] pip install tkpick Usa

Coursework project for DIP class. The goal is to use vision to guide the Dashgo robot through two traffic cones in bright color.

Coursework project for DIP class. The goal is to use vision to guide the Dashgo robot through two traffic cones in bright color.

Convert text with ANSI color codes to HTML or to LaTeX.

Convert text with ANSI color codes to HTML or to LaTeX.

It is a Blender Tool which can convert the Object Data Attributes in face corner to the UVs or Vertex Color.

Blender_ObjectDataAttributesConvertTool It is a Blender Tool which can convert the Object Data Attributes in face corner to the UVs or Vertex Color. D

Releases(v0.4)
Owner
Thomas Bury
Physicist by passion and training, Data Scientist for a living (ok it's fun too), interdisciplinary by conviction. Human Bender for some topics.
Thomas Bury
Fetch data from an excel file and create HTML file

excel-to-html Problem Statement! - Fetch data from excel file and create html file Excel.xlsx file contain the information.in multiple rows that is ne

Vivek Kashyap 1 Oct 25, 2021
CD for MachineLearnia

Codebase supporting my talk on CI/CD for MachineLearnia (Nov 12 2021) The dataset used is available here. The point of the talk is to demonstrate a si

0 Feb 23, 2022
Цифрова збрoя проти xуйлoвської пропаганди.

Паляниця Цифрова зброя проти xуйлoвської пропаганди. Щоб негайно почати шкварити рашистські сайти – мерщій у швидкий старт! ⚡️ А коли ворожі сервери в

8 Mar 22, 2022
Rotating cube with hand

I am still working on this project :)) To-Do(Present): = It needs an algorithm to fine tune my hand's coordinates for rotation of our cube (initial o

Jay Desale 2 Dec 26, 2021
Awesome & interesting talks about programming

Programming Talks I watch a lot of talks that I love to share with my friends, fellows and coworkers. As I consider all GitHubbers my friends (oh yeah

Veit Heller 7k Dec 26, 2022
A person does not exist image bot

A person does not exist image bot

Fayas Noushad 3 Dec 12, 2021
Python Library to get fast extensive Dummy Data for testing

Dumda Python Library to get fast extensive Dummy Data for testing https://pypi.org/project/dumda/ Installation pip install dumda Usage: Cities from d

Oliver B. 0 Dec 27, 2021
Your missing PO formatter and linter

pofmt Your missing PO formatter and linter Features Wrap msgid and msgstr with a constant max width. Can act as a pre-commit hook. Display lint errors

Frost Ming 5 Mar 22, 2022
Pokehandy - Data web app sobre Pokémon TCG que desarrollo durante transmisiones de Twitch, 2022

⚡️ Pokéhandy – Pokémon Hand Simulator [WIP 🚧 ] This application aims to simulat

Rodolfo Ferro 5 Feb 23, 2022
Tugas kelompok Struktur Data

Binary-Tree Tugas kelompok Struktur Data Silahkan jika ingin mengubah tipe data pada operasi binary tree *Boleh juga semua program kelompok bisa disat

Usmar manalu 2 Nov 28, 2022
A collection of Workflows samples for various use cases

Workflows Samples Workflows allow you to orchestrate and automate Google Cloud and HTTP-based API services with serverless workflows.

Google Cloud Platform 76 Jan 07, 2023
Poetry plugin to bundle projects into various formats

Poetry bundle plugin This package is a plugin that allows the bundling of Poetry projects into various formats. Installation The easiest way to instal

Poetry 54 Jan 02, 2023
Chemical equation balancer

Chemical equation balancer Balance your chemical equations with ease! Installation $ git clone

Marijan Smetko 4 Nov 26, 2022
The parser of a timetable of tennis matches for Flashscore website

FlashscoreParser The parser of a timetable of tennis matches for Flashscore website. The program collects the schedule of tennis matches for two days

Valendovsky 1 Jul 15, 2022
This repo presents you the official code of "VISTA: Boosting 3D Object Detection via Dual Cross-VIew SpaTial Attention"

VISTA VISTA: Boosting 3D Object Detection via Dual Cross-VIew SpaTial Attention Shengheng Deng, Zhihao Liang, Lin Sun and Kui Jia* (*) Corresponding a

104 Dec 29, 2022
an opensourced roblox group finder writen in python 100% free and virus-free

Roblox-Group-Finder an opensourced roblox group finder writen in python 100% free and virus-free note : if you don't want install python or just use w

mollomm1 1 Nov 11, 2021
Project repository of Apache Airflow, deployed on Docker in Amazon EC2 via GitLab.

Airflow on Docker in EC2 + GitLab's CI/CD Personal project for simple data pipeline using Airflow. Airflow will be installed inside Docker container,

Ammar Chalifah 13 Nov 29, 2022
One destination for all the developer's learning resources.

DevResources One destination for all the developer's learning resources. Find all of your learning resources under one roof and add your own. Live ✨ Y

Gaurav Sharma 33 Oct 21, 2022
Simple rofi script to choose player for playerctl to execute its command

rofi-playerctl-switcher simple rofi script to choose player for playerctl to execute its command Usage copy playerSwitch.py and playerctl.sh to ~/.con

2 Jan 03, 2022
「📖」Tool created to extract metadata from a domain

Metafind is an OSINT tool created with the aim of automating the search for metadata of a particular domain from the search engine known as Google.

9 Dec 28, 2022