Beam designs for infinite Z 3D printers

Overview

A 3D printed beam that is as stiff as steel

A while ago Naomi Wu 机械妖姬 very kindly sent us one of Creality's infinite-Z belt printers. Lots of people have printed long I beams on this type of machine, but we thought that we'd write a Python FreeCAD program to generate parametric beams more suitable for 3D printing, taking advantage of the fact that complexity is more or less free with this technology and that infinite-Z belt printers can print many overhanging shapes without support material. The result is a beam that is about as stiff as a steel beam of the same weight.

The image above shows an example of the Python output. All you need to specify is the length, width, and height, the thickness of the struts, and the diameter and number of the screw holes in the mounting blocks at the ends. The program then automatically generates the entire beam.

The central section consists of a row of open boxes, each of which is decomposed into tetrahedra. This effectively means that the entire shape is built from tetrahedra - the strongest shape - and also that most of the material is on the outer faces which gives a high second-moment of cross-sectional area for bending resistance in all directions.  The diagonals are angled so that a belt printer with a 45o Z movement can print the entire structure without support material.

The blocks at the ends are for bolting the beams to each other or to other items. The rings of 12 small holes shown allow any orientation in increments of 30o. The large holes are to allow wiring, tubes and other services to be run down the middle of the beams and connect up at the ends, or to allow things such as drive shafts to be accommodated.

It turns out that FreeCAD can't model the rings of small holes. If you want to skip a technical explanation of why this is so then just know that there's a work-round and ignore the italic section that follows.

The image below shows the shape of all the small holes that needs to be subtracted from the end blocks.

As you can see, there are a lot of common tangencies where cylinders cross. When FreeCAD throws the calculation of these to Open Cascade, which is the geometric modeller that FreeCAD uses to represent shapes, it goes away and gets lost in its own thoughts (CPU: 100%...) and you never hear from it again. I (Adrian) don't think this is really a bug in Open Cascade; any boundary-representation (B-rep) geometric modeller would probably have the same problem. Because (as the name implies) B-rep modellers represent shapes by recording the topology and geometry of their surfaces, they have to put a lot of effort into doing things like working out the curves of intersection between surfaces, and keeping all the shape topology consistent while this is done. In some cases this is quite literally impossible. For example there is no closed-form solution to working out the curve of intersection between two NURBS surfaces; that always has to be approximated. Even for cylinder-cylinder intersections, things can get complicated (look at the topological stitch-lines running along the cylinders in the picture; these all have to be matched up).

Set-theoretic (or CSG) geometric modellers have none of these problems because they don't represent the surfaces of objects; they represent their solidity. In their simplest form they can only answer one question: given a point (x, y, z), is it inside the solid part of the object or outside? - a so-called membership test. (In practice set-theoretic modellers can all do much more than this.) And they do membership-tests with rock-solid certainty. Unfortunately they are rarely used in CAD systems, except as a means of input. The reasons for this are historical rather than technical. For example the invention of the hardware depth-buffer, which allows computer graphics systems to make pictures of large numbers of triangles blindingly fast, favoured the early development of systems that represent surfaces (which are easy to triangulate). If instead a hardware ray-tracer had been implemented, then set-theoretic modellers (which are natural choices for ray tracing) might have come to dominate. (I wrote a set-theoretic modeller called SvLis in C++ about three decades ago; if you want to go mad see if you can get it going with a modern C++ compiler. If you succeed, DM me...)

The work-round in FreeCAD that allows the cylinders to be dealt with is as simple as it is nasty. The cylinder radii are perturbed a tiny bit at random:

cyl = Part.makeCylinder(d/2 + random.uniform(-0.01, 0.01), z + 0.2)

This means that what were common tangencies no longer are, quite . The perturbation is well below the resolution of 3D printing.

The following image shows the beams being printed in PLA.

When it was done, we subjected one to a bending test using weights and a dial gauge to measure deflection.

Note the pieces of wood on the left; if only we had some way to 3D-print structural parts...

The beam was held and deflected sideways so it couldn't slip in the vice. Here are the results:

The equation is that of the least-squares fit straight line. The effective length of the beam (ignoring the clamped end) was 175 mm. Its stiffness was 1.02 x 10-4 mN-1 from the graph. This meant that its flexural rigidity (EI) was 17.5 Nm2 (where E is Young's modulus in Pa and I is the second moment of area in m4). Thus we can work out that an equivalent steel beam would be 5 mm square. (That is to say, a steel beam with the same EI value.)

The printed beam weighed 47.7 grams. Coincidentally a 5 mm square steel beam of the same length (including the clamped end) would weigh about the same (47 grams), so we have made a printed beam that is about as stiff as the same weight of steel.

The printed beam was physically bigger than its steel equivalent, of course. This is to be expected as PLA has a much lower elastic modulus than steel. But printing allows any size easily to be created, it allows services to be run up the insides, and it allows a fancy pattern of attachments and screw holes to be created at the ends, all automatically.

It would also allow a beam of beams to be printed. Because it needs no support, this beam design could be used as the struts of a much bigger beam in the same pattern. This would make a fractal beam...

Our Python program that makes the beams in FreeCAD is in the Software directory of this repository in the file square-beam.py. The file Z-beam.scad is an OpenSCAD set-theoretic (CSG) version by David Eccles that he did a few hours after we released this. We all love open-source!

It has not escaped our attention that beams of this sort would be ideal components for building a RepRap infinite-Z belt printer.

Owner
RepRap Ltd
RepRap Ltd specialises in research and development in self-replicating open-source 3D printing.
RepRap Ltd
A dashboard for Raspberry Pi to display environmental weather data, rain radar, weather forecast, etc. written in Python

Weather Clock for Raspberry PI This project is a dashboard for Raspberry Pi to display environmental weather data, rain radar, weather forecast, etc.

Markus Geiger 1 May 01, 2022
Get input from OLED Joystick, Runs command, Displays output on OLED Screen (Great for P4wnP1)

p4wnsolo-joyterm Gets text input from OLED Joystick Runs the command you typed Displays output on OLED Screen (Great for P4wnP1 - even better on Raspb

PawnSolo 7 Dec 19, 2022
Beam designs for infinite Z 3D printers

A 3D printed beam that is as stiff as steel A while ago Naomi Wu 机械妖姬 very kindly sent us one of Creality's infinite-Z belt printers. Lots of people h

RepRap Ltd 105 Oct 22, 2022
2D waypoints will be predefined in ROS based robots to navigate to the destination avoiding obstacles.

A number of 2D waypoints will be predefined in ROS based robots to navigate to the destination avoiding obstacles.

Arghya Chatterjee 5 Nov 05, 2022
HACS gives you a powerful UI to handle downloads of all your custom needs.

HACS (Home Assistant Community Store) Manage (Install, track, upgrade) and discover custom elements for Home Assistant directly from the UI. What? HAC

HACS 3.2k Jan 04, 2023
Zev es un Bot/Juego RPG de Discord creado en y para aprender Python.

Zev es un Bot/Juego RPG de Discord creado en y para aprender Python.

Julen Smith 3 Jan 12, 2022
This Home Assistant custom component adding support for controlling Midea dehumidifiers on local network.

This custom component for Home Assistant adds support for Midea air conditioner and dehumidifier appliances via the local area network. homeassistant-

Nenad Bogojevic 92 Dec 31, 2022
Automatic Watering System using Soil Moisture Sensor and RTC Timer with Arduino

Automatic-Watering-System - Technical Answers to Real-World Problems. Evolution of Watering Manually to Watering Automatically.

Vaishnavi Pothugunta 4 Dec 31, 2021
The ABR Control library is a python package for the control and path planning of robotic arms in real or simulated environments.

The ABR Control library is a python package for the control and path planning of robotic arms in real or simulated environments. ABR Control provides API's for the Mujoco, CoppeliaSim (formerly known

Applied Brain Research 277 Jan 05, 2023
This is a python script to grab data from Zyxel NSA310 NAS and display in Home Asisstant as sensors.

Home-Assistant Python Scripts Python Scripts for Home-Assistant (http://www.home-assistant.io) Zyxel-NSA310-Home-Assistant Monitoring This is a python

6 Oct 31, 2022
Robo Arm :: Rigging is a rigging addon for Blender that helps animating industrial robotic arms.

Robo Arm :: Rigging Robo Arm :: Rigging is a rigging addon for Blender that helps animating industrial robotic arms. It construct serial links(a kind

2 Nov 18, 2021
PlatformIO development platform for GSM modules

PlatformIO development platform for GSM modules Supported Modules Quectel M66 OpenCPU Arduino - TODO other - in progress... Supported Boards Comet M66

Georgi Angelov 5 Aug 06, 2022
Home Assistant custom integration for Yi cameras: yi-hack-MStar, yi-hack-Allwinner and yi-hack-Allwinner-v2

yi-hack Home Assistant integration Overview yi-hack Home Assistant is a custom integration for Yi cameras (or Sonoff camera) with one of the following

roleo 131 Jan 03, 2023
ArucoFollow - A script for Robot Operating System and it is a part of a project Robot

ArucoFollow ArucoFollow is a script for Robot Operating System and it is a part

5 Jan 25, 2022
This repository contains all the code and files needed to simulate the notspot quadrupedal robot using Gazebo and ROS.

Notspot robot simulation - Python version This repository contains all the files and code needed to simulate the notspot quadrupedal robot using Gazeb

50 Sep 26, 2022
This OctoPrint plugin will make the initial connection to 3D Hub a breeze

3D Hub Connector This OctoPrint plugin will make the initial connection to 3D Hub a breeze. In future it will help in setting up a tunnel connection a

3D Hub 2 Aug 03, 2022
A global contest to grow and monitor your own food with Raspberry Pi

growlab A global contest to grow and monitor your own food with Raspberry Pi A capture from phototimer of my seed tray with a wide-angle camera positi

Alex Ellis 442 Dec 23, 2022
PyLog - Simple keylogger that uses pynput to listen to keyboard input.

Simple keylogger that uses pynput to listen to keyboard input. Outputs to a text file and the terminal. Press the escape key to stop.

1 Dec 29, 2021
Repo for the esp32s2 version of the Wi-Fi Nugget

Repo for the esp32s2 version of the Wi-Fi Nugget

HakCat 30 Nov 05, 2022
A Python script to monitor the latest block on an LCD.

PiHole-Monitoring A Python script to monitor the latest block on a lcd display. The first number represents the dns queries from the last 24h, the sec

Maxi 4 Dec 05, 2022