[email protected] Reverb Database. | PythonRepo" /> [email protected] Reverb Database. | PythonRepo">

The purpose of this code base is to add a specified signal-to-noise ratio noise from MUSAN dataset to a pure speech signal and to generate far-field speech data using room impulse response data from BUT [email protected] Reverb Database.

Overview

Add_noise_and_rir_to_speech

The purpose of this code base is to add a specified signal-to-noise ratio noise from MUSAN dataset to a pure speech signal and to generate far-field speech data using room impulse response data from BUT [email protected] Reverb Database.

Noise and RIR dataset description:

  • BUT [email protected] Reverb Database:

    The database is being built with respect to collect a large number of various Room Impulse Responses, Room environmental noises (or "silences"), Retransmitted speech (for ASR and SID testing), and meta-data (positions of microphones, speakers etc.).

    The goal is to provide speech community with a dataset for data enhancement and distant microphone or microphone array experiments in ASR and SID.

    In this codebase, we only use the RIR data, which is used to synthesize far-field speech, the composition of the RIR dataset and citation details are as follows.

    Room Name Room Type Size (length, depth, height) (m) (microphone_num x loudspeaker_num)
    Q301 Office 10.7x6.9x2.6 31 x 3
    L207 Office 4.6x6.9x3.1 31 x 6
    L212 Office 7.5x4.6x3.1 31 x 5
    L227 Stairs 6.2x2.6x14.2 31 x 5
    R112 Hotel room 4.4x2.8x2.6 31 x 5
    CR2 Conference room 28.2x11.1x3.3 31 x 4
    E112 Lecture room 11.5x20.1x4.8 31 x 2
    D105 Lecture room 17.2x22.8x6.9 31 x 6
    C236 Meeting room 7.0x4.1x3.6 31 x 10
    @ARTICLE{8717722,
             author={Szöke, Igor and Skácel, Miroslav and Mošner, Ladislav and Paliesek, Jakub and Černocký, Jan},
             journal={IEEE Journal of Selected Topics in Signal Processing}, 
             title={Building and evaluation of a real room impulse response dataset}, 
             year={2019},
             volume={13},
             number={4},
             pages={863-876},
             doi={10.1109/JSTSP.2019.2917582}
     }
    
  • MUSAN database:

    The database consists of music from several genres, speech from twelve languages, and a wide assortment of technical and non-technical noises and we only use the noise data in this database. Citation details are as follows.

    @misc{snyder2015musan,
          title={MUSAN: A Music, Speech, and Noise Corpus}, 
          author={David Snyder and Guoguo Chen and Daniel Povey},
          year={2015},
          eprint={1510.08484},
          archivePrefix={arXiv},
          primaryClass={cs.SD}
    }
    

Before using the data-processing code:

  • If you do not want the original dataset to be overwritten, please download the dataset again for use

  • You need to create three files: 'training_list.txt', 'validation_list.txt', 'testing_list.txt', based on your training, validation and test data file paths respectively, and ensure the audio in the file paths can be read and written.

  • The content of the aforementioned '*_list.txt' files are in the following form:

    *_list.txt
    	/../...../*.wav
    	/../...../*.wav
    	/../...../*.wav
    

Instruction for using the following data-processing code:

  1. mix_cleanaudio_with_rir_offline.py: Generate far-field speech offline

    • two parameters are needed:

      • --data_root: the data path which you want to download and store the RIR dataset in.
      • --clean_data_list_path: the path of the folder in which 'training_list.txt', 'validation_list.txt', 'testing_list.txt' are stored in
    • 2 folders will be created in data_root: 'ReverDB_data (Removable if needed)', 'ReverDB_mix'

  2. download_and_extract_noise_file.py: Generate musan noise file

    • one parameters are needed:
      • --data_root: the data path which you want to download and store the noise dataset in.
    • 2 folder will be created in data_root: 'musan (Removable if needed)', 'noise'
  3. vad_torch.py: Voice activity detection when adding noise to the speech

    The noise data is usually added online according to the SNR requirements, several pieces of code are provided below, please add them in the appropriate places according to your needs!

    import torchaudio
    import numpy as np
    import torch
    import random
    from vad_torch import VoiceActivityDetector
    
    
    def _add_noise(speech_sig, vad_duration, noise_sig, snr):
        """add noise to the audio.
        :param speech_sig: The input audio signal (Tensor).
        :param vad_duration: The length of the human voice (int).
        :param noise_sig: The input noise signal (Tensor).
        :param snr: the SNR you want to add (int).
        :returns: noisy speech sig with specific snr.
        """
        if vad_duration != 0:
            snr = 10**(snr/10.0)
            speech_power = torch.sum(speech_sig**2)/vad_duration
            noise_power = torch.sum(noise_sig**2)/noise_sig.shape[1]
            noise_update = noise_sig / torch.sqrt(snr * noise_power/speech_power)
    
            if speech_sig.shape[1] > noise_update.shape[1]:
                # padding
                temp_wav = torch.zeros(1, speech_sig.shape[1])
                temp_wav[0, 0:noise_update.shape[1]] = noise_update
                noise_update = temp_wav
            else:
                # cutting
                noise_update = noise_update[0, 0:speech_sig.shape[1]]
    
            return noise_update + speech_sig
        
        else:
            return speech_sig
        
    def main():
        # loading speech file
        speech_file = './speech.wav'
    	waveform, sr = torchaudio.load(speech_file)
    	waveform = waveform - waveform.mean()
    	
        # loading noise file and set snr
    	snr = 0       
    	noise_file = random.randint(1, 930)
    	
        # Voice activity detection
    	v = VoiceActivityDetector(waveform, sr)
    	raw_detection = v.detect_speech()
    	speech_labels = v.convert_windows_to_readible_labels(raw_detection)
    	vad_duration = 0
        if not len(speech_labels) == 0:
            for i in range(len(speech_labels)):
                start = speech_labels[i]['speech_begin']
                end = speech_labels[i]['speech_end']
                vad_duration = vad_duration + end-start
                
    	# adding noise
        noise, _ = torchaudio.load('/notebooks/noise/' + str(noise_file) + '.wav')
        waveform = _add_noise(waveform, vad_duration, noise, snr)
    
    if __name__ == '__main__':
        main()
Owner
Yunqi Chen
3rd-year undergraduate student; Passionate about all kinds of sports and everything interesting!
Yunqi Chen
Clock in automatically in SCU.

auto_clock_in Clock in automatically in SCU. Features send logs to Telegram bot How to use? pip install -r requirements.txt () edit user_list, token_A

2 Dec 13, 2021
Sample microservices application demo

Development mode docker-compose -f docker-compose.yml -f docker-compose.dev.yml up -d or export COMPOSE_FILE='docker-compose.yml:docker-compose.dev.ym

Konstantinos Bairaktaris 1 Nov 14, 2021
A Lynx that manages a group that puts the federation first.

Lynx Super Federation Management Group Lynx was created to manage your groups on telegram and focuses on the Lynx Federation. I made this to root out

Unknown 2 Nov 01, 2022
personal dotfiles for rolling release linux distros

dotfiles Screenshots: Directions: Deploy my dotfiles with yadm Packages from arch listed in .installed-packages Information on osu! see ~/Games/osu!/.

-pacer- 0 Sep 18, 2022
Participants of Bertelsmann Technology Scholarship created an awesome list of resources and they want to share it with the world, if you find illegal resources please report to us and we will remove.

Participants of Bertelsmann Technology Scholarship created an awesome list of resources and they want to share it with the world, if you find illegal

Wissem Marzouki 29 Nov 28, 2022
Developing and Comparing Vision-based Algorithms for Vision-based Agile Flight

DodgeDrone: Vision-based Agile Drone Flight (ICRA 2022 Competition) Would you like to push the boundaries of drone navigation? Then participate in the

Robotics and Perception Group 115 Dec 10, 2022
IEEE ITU bunyesinde komitelere verilen Python3 egitiminin dokumanlastirilmis versiyonlari bu repository altinda tutulmaktadir.

IEEE ITU Python Egitimi Nasil Faydalanmaliyim? Dersleri izledikten sonra dokumanlardaki kodlari yorum satirlari isaretlerini kaldirarak deneyebilirsin

İTÜ IEEE Student Branch 47 Sep 04, 2022
Rufus port to linux, writed on Python3

Rufus-for-Linux Rufus port to linux, writed on Python3 Программа будет иметь тот же интерфейс что и оригинал, и тот же функционал. Программа создается

6 Jan 07, 2022
JLC2KICAD_lib is a python script that generate a component library for KiCad from the JLCPCB/easyEDA library.

JLC2KiCad_lib is a python script that generate a component library (schematic, footprint and 3D model) for KiCad from the JLCPCB/easyEDA library. This script requires Python 3.6 or higher.

Nicolas Toussaint 73 Dec 26, 2022
Release for Improved Denoising Diffusion Probabilistic Models

improved-diffusion This is the codebase for Improved Denoising Diffusion Probabilistic Models. Usage This section of the README walks through how to t

OpenAI 1.2k Dec 30, 2022
Binary++ is an esoteric programming language based on* binary

Binary++ is an esoteric programming language based on* binary. * It's meant to be based on binary, but you can write Binary++ code using different mea

Supercolbat 3 Feb 18, 2022
A submodule of rmcrkd/ODE-Uniqueness

Heston-ODE This repo contains the Heston-related code that accompanies the article One-sided maximal uniqueness for a class of spatially irregular ord

0 Jan 05, 2022
A water drinking notification every hour to keep you healthy while coding :)

Water_Notification A water drinking notification every hour to keep you healthy while coding. 💧 💧 Stay Hydrated Stay Healthy 💧 💧 Authors @CrazyCat

Arghya Banerjee 1 Dec 22, 2021
A Lego Mindstorm robot for dealing out cards based on a birds-eye view of a poker table and given ArUco fiducial tags.

A Lego Mindstorm robot for dealing out cards based on a birds-eye view of a poker table and given ArUco fiducial tags.

4 Dec 06, 2021
Attempt at a Windows version of the plotman Chia Plot Manager system

windows plotman: an attempt to get plotman to work on windows THIS IS A BETA. Not ready for production use just yet. Almost, but not quite there yet.

59 May 11, 2022
SQL centered, docker process running game

REQUIREMENTS Linux Docker Python/bash set up image "docker build -t game ." create db container "run my_whatever/game_docker/pdb create" # creating po

1 Jan 11, 2022
Minimal, super readable string pattern matching for python.

simplematch Minimal, super readable string pattern matching for python. import simplematch simplematch.match("He* {planet}!", "Hello World!") {"p

Thomas Feldmann 147 Dec 01, 2022
Explore related sequences in the OEIS

OEIS explorer This is a tool for exploring two different kinds of relationships between sequences in the OEIS: mentions (links) of other sequences on

Alex Hall 6 Mar 15, 2022
Custom python interface to xstan (a modified (cmd)stan)

Custom python interface to xstan (a modified (cmd)stan) Use at your own risk, currently everything is very brittle and will probably be changed in the

2 Dec 16, 2021
Archive, organize, and watch for changes to publicly available information.

0. Overview The Trapper Keeper is a collection of scripts that support archiving information from around the web to make it easier to study and use. I

Bill Fitzgerald 9 Oct 26, 2022