A test fixtures replacement for Python

Overview

factory_boy

Latest Version Supported Python versions Wheel status License

factory_boy is a fixtures replacement based on thoughtbot's factory_bot.

As a fixtures replacement tool, it aims to replace static, hard to maintain fixtures with easy-to-use factories for complex objects.

Instead of building an exhaustive test setup with every possible combination of corner cases, factory_boy allows you to use objects customized for the current test, while only declaring the test-specific fields:

class FooTests(unittest.TestCase):

    def test_with_factory_boy(self):
        # We need a 200€, paid order, shipping to australia, for a VIP customer
        order = OrderFactory(
            amount=200,
            status='PAID',
            customer__is_vip=True,
            address__country='AU',
        )
        # Run the tests here

    def test_without_factory_boy(self):
        address = Address(
            street="42 fubar street",
            zipcode="42Z42",
            city="Sydney",
            country="AU",
        )
        customer = Customer(
            first_name="John",
            last_name="Doe",
            phone="+1234",
            email="[email protected]",
            active=True,
            is_vip=True,
            address=address,
        )
        # etc.

factory_boy is designed to work well with various ORMs (Django, MongoDB, SQLAlchemy), and can easily be extended for other libraries.

Its main features include:

  • Straightforward declarative syntax
  • Chaining factory calls while retaining the global context
  • Support for multiple build strategies (saved/unsaved instances, stubbed objects)
  • Multiple factories per class support, including inheritance

Links

Download

PyPI: https://pypi.org/project/factory-boy/

$ pip install factory_boy

Source: https://github.com/FactoryBoy/factory_boy/

$ git clone git://github.com/FactoryBoy/factory_boy/
$ python setup.py install

Usage

Note

This section provides a quick summary of factory_boy features. A more detailed listing is available in the full documentation.

Defining factories

Factories declare a set of attributes used to instantiate a Python object. The class of the object must be defined in the model field of a class Meta: attribute:

import factory
from . import models

class UserFactory(factory.Factory):
    class Meta:
        model = models.User

    first_name = 'John'
    last_name = 'Doe'
    admin = False

# Another, different, factory for the same object
class AdminFactory(factory.Factory):
    class Meta:
        model = models.User

    first_name = 'Admin'
    last_name = 'User'
    admin = True

ORM integration

factory_boy integration with Object Relational Mapping (ORM) tools is provided through specific factory.Factory subclasses:

  • Django, with factory.django.DjangoModelFactory
  • Mogo, with factory.mogo.MogoFactory
  • MongoEngine, with factory.mongoengine.MongoEngineFactory
  • SQLAlchemy, with factory.alchemy.SQLAlchemyModelFactory

More details can be found in the ORM section.

Using factories

factory_boy supports several different build strategies: build, create, and stub:

# Returns a User instance that's not saved
user = UserFactory.build()

# Returns a saved User instance.
# UserFactory must subclass an ORM base class, such as DjangoModelFactory.
user = UserFactory.create()

# Returns a stub object (just a bunch of attributes)
obj = UserFactory.stub()

You can use the Factory class as a shortcut for the default build strategy:

# Same as UserFactory.create()
user = UserFactory()

No matter which strategy is used, it's possible to override the defined attributes by passing keyword arguments:

# Build a User instance and override first_name
>>> user = UserFactory.build(first_name='Joe')
>>> user.first_name
"Joe"

It is also possible to create a bunch of objects in a single call:

>>> users = UserFactory.build_batch(10, first_name="Joe")
>>> len(users)
10
>>> [user.first_name for user in users]
["Joe", "Joe", "Joe", "Joe", "Joe", "Joe", "Joe", "Joe", "Joe", "Joe"]

Realistic, random values

Demos look better with random yet realistic values; and those realistic values can also help discover bugs. For this, factory_boy relies on the excellent faker library:

class RandomUserFactory(factory.Factory):
    class Meta:
        model = models.User

    first_name = factory.Faker('first_name')
    last_name = factory.Faker('last_name')
>>> RandomUserFactory()
<User: Lucy Murray>

Reproducible random values

The use of fully randomized data in tests is quickly a problem for reproducing broken builds. To that purpose, factory_boy provides helpers to handle the random seeds it uses, located in the factory.random module:

import factory.random

def setup_test_environment():
    factory.random.reseed_random('my_awesome_project')
    # Other setup here

Lazy Attributes

Most factory attributes can be added using static values that are evaluated when the factory is defined, but some attributes (such as fields whose value is computed from other elements) will need values assigned each time an instance is generated.

These "lazy" attributes can be added as follows:

class UserFactory(factory.Factory):
    class Meta:
        model = models.User

    first_name = 'Joe'
    last_name = 'Blow'
    email = factory.LazyAttribute(lambda a: '{}.{}@example.com'.format(a.first_name, a.last_name).lower())
    date_joined = factory.LazyFunction(datetime.now)
>>> UserFactory().email
"[email protected]"

Note

LazyAttribute calls the function with the object being constructed as an argument, when LazyFunction does not send any argument.

Sequences

Unique values in a specific format (for example, e-mail addresses) can be generated using sequences. Sequences are defined by using Sequence or the decorator sequence:

class UserFactory(factory.Factory):
    class Meta:
        model = models.User

    email = factory.Sequence(lambda n: 'person{}@example.com'.format(n))

>>> UserFactory().email
'[email protected]'
>>> UserFactory().email
'[email protected]'

Associations

Some objects have a complex field, that should itself be defined from a dedicated factories. This is handled by the SubFactory helper:

class PostFactory(factory.Factory):
    class Meta:
        model = models.Post

    author = factory.SubFactory(UserFactory)

The associated object's strategy will be used:

# Builds and saves a User and a Post
>>> post = PostFactory()
>>> post.id is None  # Post has been 'saved'
False
>>> post.author.id is None  # post.author has been saved
False

# Builds but does not save a User, and then builds but does not save a Post
>>> post = PostFactory.build()
>>> post.id is None
True
>>> post.author.id is None
True

Support Policy

factory_boy supports active Python versions as well as PyPy3.

Debugging factory_boy

Debugging factory_boy can be rather complex due to the long chains of calls. Detailed logging is available through the factory logger.

A helper, factory.debug(), is available to ease debugging:

with factory.debug():
    obj = TestModel2Factory()


import logging
logger = logging.getLogger('factory')
logger.addHandler(logging.StreamHandler())
logger.setLevel(logging.DEBUG)

This will yield messages similar to those (artificial indentation):

BaseFactory: Preparing tests.test_using.TestModel2Factory(extra={})
  LazyStub: Computing values for tests.test_using.TestModel2Factory(two=<OrderedDeclarationWrapper for <factory.declarations.SubFactory object at 0x1e15610>>)
    SubFactory: Instantiating tests.test_using.TestModelFactory(__containers=(<LazyStub for tests.test_using.TestModel2Factory>,), one=4), create=True
    BaseFactory: Preparing tests.test_using.TestModelFactory(extra={'__containers': (<LazyStub for tests.test_using.TestModel2Factory>,), 'one': 4})
      LazyStub: Computing values for tests.test_using.TestModelFactory(one=4)
      LazyStub: Computed values, got tests.test_using.TestModelFactory(one=4)
    BaseFactory: Generating tests.test_using.TestModelFactory(one=4)
  LazyStub: Computed values, got tests.test_using.TestModel2Factory(two=<tests.test_using.TestModel object at 0x1e15410>)
BaseFactory: Generating tests.test_using.TestModel2Factory(two=<tests.test_using.TestModel object at 0x1e15410>)

Contributing

factory_boy is distributed under the MIT License.

Issues should be opened through GitHub Issues; whenever possible, a pull request should be included. Questions and suggestions are welcome on the mailing-list.

Development dependencies can be installed in a virtualenv with:

$ pip install --editable '.[dev]'

All pull requests should pass the test suite, which can be launched simply with:

$ make testall

In order to test coverage, please use:

$ make coverage

To test with a specific framework version, you may use a tox target:

# list all tox environments
$ tox --listenvs

# run tests inside a specific environment
$ tox -e py36-django20-alchemy13-mongoengine017

Valid options are:

  • DJANGO for Django
  • MONGOENGINE for mongoengine
  • ALCHEMY for SQLAlchemy

To avoid running mongoengine tests (e.g no MongoDB server installed), run:

$ make SKIP_MONGOENGINE=1 test
Owner
FactoryBoy project
Contributors to the factory_boy Python library, and related projects
FactoryBoy project
Connexion-faker - Auto-generate mocks from your Connexion API using OpenAPI

Connexion Faker Get Started Install With poetry: poetry add connexion-faker # a

Erle Carrara 6 Dec 19, 2022
Fidelipy - Semi-automated trading on fidelity.com

fidelipy fidelipy is a simple Python 3.7+ library for semi-automated trading on fidelity.com. The scope is limited to the Trade Stocks/ETFs simplified

Darik Harter 8 May 10, 2022
Load and performance benchmark tool

Yandex Tank Yandextank has been moved to Python 3. Latest stable release for Python 2 here. Yandex.Tank is an extensible open source load testing tool

Yandex 2.2k Jan 03, 2023
An Instagram bot that can mass text users, receive and read a text, and store it somewhere with user details.

Instagram Bot 🤖 July 14, 2021 Overview 👍 A multifunctionality automated instagram bot that can mass text users, receive and read a message and store

Abhilash Datta 14 Dec 06, 2022
0hh1 solver for the web (selenium) and also for mobile (adb)

0hh1 - Solver Aims to solve the '0hh1 puzzle' for all the sizes (4x4, 6x6, 8x8, 10x10 12x12). for both the web version (using selenium) and on android

Adwaith Rajesh 1 Nov 05, 2021
This is a Python script for Github Bot which uses Selenium to Automate things.

github-follow-unfollow-bot This is a Python script for Github Bot which uses Selenium to Automate things. Pre-requisites :- Python A Github Account Re

Chaudhary Hamdan 10 Jul 01, 2022
pytest plugin providing a function to check if pytest is running.

pytest-is-running pytest plugin providing a function to check if pytest is running. Installation Install with: python -m pip install pytest-is-running

Adam Johnson 21 Nov 01, 2022
HTTP client mocking tool for Python - inspired by Fakeweb for Ruby

HTTPretty 1.0.5 HTTP Client mocking tool for Python created by Gabriel Falcão . It provides a full fake TCP socket module. Inspired by FakeWeb Github

Gabriel Falcão 2k Jan 06, 2023
py.test fixture for benchmarking code

Overview docs tests package A pytest fixture for benchmarking code. It will group the tests into rounds that are calibrated to the chosen timer. See c

Ionel Cristian Mărieș 1k Jan 03, 2023
Plugin for generating HTML reports for pytest results

pytest-html pytest-html is a plugin for pytest that generates a HTML report for test results. Resources Documentation Release Notes Issue Tracker Code

pytest-dev 548 Dec 28, 2022
Pymox - open source mock object framework for Python

Pymox is an open source mock object framework for Python. First Steps Installation Tutorial Documentation http://pymox.readthedocs.io/en/latest/index.

Ivan Rocha 7 Feb 02, 2022
Tutorial for integrating Oxylabs' Residential Proxies with Selenium

Oxylabs’ Residential Proxies integration with Selenium Requirements For the integration to work, you'll need to install Selenium on your system. You c

Oxylabs.io 8 Dec 08, 2022
Descriptor Vector Exchange

Descriptor Vector Exchange This repo provides code for learning dense landmarks without supervision. Our approach is described in the ICCV 2019 paper

James Thewlis 74 Nov 29, 2022
A mocking library for requests

httmock A mocking library for requests for Python 2.7 and 3.4+. Installation pip install httmock Or, if you are a Gentoo user: emerge dev-python/httm

Patryk Zawadzki 452 Dec 28, 2022
Using openpyxl in Python, performed following task

Python-Automation-with-openpyxl Using openpyxl in Python, performed following tasks on an Excel Sheet containing Product Suppliers along with their pr

1 Apr 06, 2022
A simple tool to test internet stability.

pingtest Description A personal project for testing internet stability, intended for use in Linux and Windows.

chris 0 Oct 17, 2021
API Test Automation with Requests and Pytest

api-testing-requests-pytest Install Make sure you have Python 3 installed on your machine. Then: 1.Install pipenv sudo apt-get install pipenv 2.Go to

Sulaiman Haque 2 Nov 21, 2021
buX Course Enrollment Automation

buX automation BRACU - buX course enrollment automation Features: Automatically enroll into multiple courses at a time. Find courses just entering cou

Mohammad Shakib 1 Oct 06, 2022
A collection of benchmarking tools.

Benchmark Utilities About A collection of benchmarking tools. PYPI Package Table of Contents Using the library Installing and using the library Manual

Kostas Georgiou 2 Jan 28, 2022
LuluTest is a Python framework for creating automated browser tests.

LuluTest LuluTest is an open source browser automation framework using Python and Selenium. It is relatively lightweight in that it mostly provides wr

Erik Whiting 14 Sep 26, 2022