Sie_banxico - A python class for the Economic Information System (SIE) API of Banco de México

Overview

sie_banxico

PyPi Version

A python class for the Economic Information System (SIE) API of Banco de México.

Args: token (str): A query token from Banco de México id_series (list): A list with the economic series id or with the series id range to query. ** A list must be given even though only one serie is consulted. language (str): Language of the obtained information. 'en' (default) for english or 'es' for spanish

Notes: (1) In order to retrive information from the SIE API, a query token is required. The token can be requested here (2) Each economic serie is related to an unique ID. The full series catalogue can be consulted here

Pypi Installation

pip install sie_banxico

SIEBanxico Class Instance

Querying Monetary Aggregates M1 (SF311408) and M2 (SF311418) Data

 >>> from api_banxico import SIEBanxico
 >>> api = SIEBanxico(token = token, id_series = ['SF311408' ,'SF311418'], language = 'en')

Class documentation and attributes

>>> api.__doc__
'Returns the full class documentation'
>>> api.token
'1b7da065cf574289a2cb511faeXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' # This is an example token
>>> api.series
'SF311408,SF311418'

Methods for modify the arguments of the object

set_token: Change the current query token

>>> api.set_token(token = new_token)

set_id_series: Allows to change the series to query

>>> api.append_id_series(id_series = ['SF311412'])
>>> api.series
'SF311408,SF311418,SF311412'

append_id_series: Allows to update the series to query

>>> api.set_id_series(id_series='SF311408-SF311418')
>>> api.series
'SF311408-SF311418'

GET Request Methods

>>> api = SIEBanxico(token = token, id_series = ['SF311408' ,'SF311418']

get_metadata: Allows to consult metadata of the series

    Allows to consult metadata of the series.
    Returns:
        dict: json response format
>>> api.get_metadata()
{'bmx': {'series': [{'idSerie': 'SF311418', 'titulo': 'Monetary Aggregates M2 = M1 + monetary instruments held by residents', 'fechaInicio': '12/01/2000', 'fechaFin': '11/01/2021', 'periodicidad': 'Monthly', 'cifra': 'Stocks', 'unidad': 'Thousands of Pesos', 'versionada': False}, {'idSerie': 'SF311408', 'titulo': 'Monetary Aggregates M1', 'fechaInicio': '12/01/2000', 'fechaFin': '11/01/2021', 'periodicidad': 'Monthly', 'cifra': 'Stocks', 'unidad': 'Thousands of Pesos', 'versionada': False}]}}

get_lastdata: Returns the most recent published data

Returns the most recent published data for the requested series. Args: pct_change (str, optional): None (default) for levels, "PorcObsAnt" for change rate compared to the previous observation, "PorcAnual" for anual change rate, "PorcAcumAnual" for annual acummulated change rate. Returns: dict: json response format

>>> api.get_lastdata()
{'bmx': {'series': [{'idSerie': 'SF311418', 'titulo': 'Monetary Aggregates M2 = M1 + monetary instruments held by residents', 'datos': [{'fecha': '01/11/2021', 'dato': '11,150,071,721.09'}]}, {'idSerie': 'SF311408', 'titulo': 'Monetary Aggregates M1', 'datos': [{'fecha': '01/11/2021', 'dato': '6,105,266,291.65'}]}]}}

get_timeseries: Allows to consult time series data

    Allows to consult the whole time series data, corresponding to the period defined between the initial date and the final date in the metadata.
    Args:
        pct_change (str, optional): None (default) for levels, "PorcObsAnt" for change rate compared to the previous observation, "PorcAnual" for anual change rate, "PorcAcumAnual" for annual acummulated change rate.
    Returns:
        dict: json response format
>>> api.get_timeseries(pct_change='PorcAnual')
{'bmx': {'series': [{'idSerie': 'SF311418',
    'titulo': 'Monetary Aggregates M2 = M1 + monetary instruments held by residents',
    'datos': [{'fecha': '01/12/2001', 'dato': '12.89'},
     {'fecha': '01/01/2002', 'dato': '13.99'},
     ...
     {'fecha': '01/11/2021', 'dato': '13.38'}],
     'incrementos': 'PorcAnual'}]}}

get_timeseries_range: Returns the data for the period defined

    Returns the data of the requested series, for the defined period.
    Args:
        init_date (str): The date on which the period of obtained data starts. The date must be sent in the format yyyy-mm-dd. If the given date is out of the metadata time range, the oldest value is returned.
        end_date (str): The date on which the period of obtained data concludes. The date must be sent in the format yyyy-mm-dd. If the given date is out of the metadata time range, the most recent value is returned.
        pct_change (str, optional): None (default) for levels, "PorcObsAnt" for change rate compared to the previous observation, "PorcAnual" for anual change rate, "PorcAcumAnual" for annual acummulated change rate.     
    Returns:
        dict: json response format
>>> api.get_timeseries_range(init_date='2000-12-31', end_date='2004-04-01')
{'bmx': {'series': [{'idSerie': 'SF311408',
    'titulo': 'Monetary Aggregates M1',
    'datos': [{'fecha': '01/01/2001', 'dato': '524,836,129.99'},
     {'fecha': '01/02/2001', 'dato': '517,186,605.97'},
     ...
     {'fecha': '01/04/2004', 'dato': '2,306,755,672.89'}]}]}}

Pandas integration for data manipulation (and further analysis)

All the request methods returns a response in json format that can be used with other Python libraries.

The response for the api.get_timeseries_range(init_date='2000-12-31', end_date='2004-04-01') is a nested dictionary, so we need to follow a path to extract the specific values for the series and then transform the data into a pandas object; like a Serie or a DataFrame. For example:

data = api.get_timeseries_range(init_date='2000-12-31', end_date='2004-04-01')

# Extract the Monetary Aggregate M1 data
data['bmx']['series'][0]['datos']
[{'fecha': '01/01/2001', 'dato': '524,836,129.99'},
 ...
 {'fecha': '01/04/2004', 'dato': '799,774,807.43'}]

# Transform the data into a pandas DataDrame
import pandas as pd
df = pd.DataFrame(timeseries_range['bmx']['series'][0]['datos'])
df.head()
        fecha            dato
0  01/01/2001  524,836,129.99
1  01/02/2001  517,186,605.97
2  01/03/2001  509,701,873.04
3  01/04/2001  511,952,430.01
4  01/05/2001  514,845,459.96

Another useful pandas function to transform json formats into a dataframe is 'json_normalize':

df = pd.json_normalize(timeseries_range['bmx']['series'], record_path = 'datos', meta = ['idSerie', 'titulo'])
df['titulo'] = df['titulo'].apply(lambda x: x.replace('Monetary Aggregates M2 = M1 + monetary instruments held by residents', 'Monetary Aggregates M2'))
df.head()
        fecha            dato   idSerie                  titulo
0  01/01/2001  524,836,129.99  SF311408  Monetary Aggregates M1
1  01/02/2001  517,186,605.97  SF311408  Monetary Aggregates M1
2  01/03/2001  509,701,873.04  SF311408  Monetary Aggregates M1
3  01/04/2001  511,952,430.01  SF311408  Monetary Aggregates M1
4  01/05/2001  514,845,459.96  SF311408  Monetary Aggregates M1
df.tail()
         fecha              dato   idSerie                  titulo
75  01/12/2003  2,331,594,974.69  SF311418  Monetary Aggregates M2
76  01/01/2004  2,339,289,328.74  SF311418  Monetary Aggregates M2
77  01/02/2004  2,285,732,239.36  SF311418  Monetary Aggregates M2
78  01/03/2004  2,312,217,167.10  SF311418  Monetary Aggregates M2
79  01/04/2004  2,306,755,672.89  SF311418  Monetary Aggregates M2

Licence

The MIT License (MIT)

By

Dillan Aguirre Sedeño ([email protected])

Owner
Dillan
Dillan
Acid's Utilities is a bot for my Discord server that alerts when I go live, welcomes new users, has some awesome games and so much more!

Acid's Utilities Acid's Utilities is a bot for my Discord server that alerts when I go live, welcomes new users, has some awesome games and so much mo

AcidFilms (Fin Stuart) 3 Nov 19, 2021
An unofficial library for discord components (under-development)

discord-components An unofficial library for discord components (under-development) Welcome! Discord components are cool, but discord.py will support

11 Jun 14, 2021
Source Code for our bot that manages time and other functions of the server <3

Komi San wants you to study This repo contains the source code for our bot that manages time and other functions of the server 3 Features Your study

Komi San wants you to study 8 Nov 08, 2021
Check your bot status automatically using userbot, simply and easy

Status Checker Userbot check your bot status automatically using userbot, simply and easy. Mandatory Vars API_ID : Telegram API_ID, get it from my.tel

ALBY 6 Feb 20, 2022
Filters to block and remove copycat-websites from DuckDuckGo and Google. Specific to dev websites like StackOverflow or GitHub.

uBlock-Origin-dev-filter Filters to block and remove copycat-websites from DuckDuckGo and Google. Specific to dev websites like StackOverflow or GitHu

1.7k Dec 30, 2022
CnCL - CnCLess it's an Easy to deploy Botnet without CnC/C2

CnCL CnCLess it's an Easy to deploy Botnet without CnC/C2, Harder to track and t

ZSendokame 2 Jan 10, 2022
Buy early bsc gems with custom gas fee, slippage, amount. Auto approve token after buy. Sell buyed token with custom gas fee, slippage, amount. And more.

Pancakeswap Sniper bot Full version of Pancakeswap sniping bot used to snipe during fair coin launches. With advanced options and a graphical user int

Jesus Crypto 204 Apr 27, 2022
Chronocalc - Calculates the dates and times when the sun or moon is in a given position in the sky

Chronocalc I wrote this script after I was busy updating my article on chronoloc

16 Dec 13, 2022
A Discord Token Spammer, multi webhooks compatibility, made in python +3.7. By Ezermoz

DiscordWebhookSpammer A Discord Token Spammer, multi webhooks compatibility, made in python +3.7. By Ezermoz Put you webhook in webhooks.txt if you wa

3 Nov 24, 2021
An unofficial client library for Google Music.

gmusicapi: an unofficial API for Google Play Music gmusicapi allows control of Google Music with Python. from gmusicapi import Mobileclient api = Mob

Simon Weber 2.5k Dec 15, 2022
IACR Events Scraper

IACR Events Scraper This scrapes https://iacr.org/events/ and exports it as a calendar file. I host a version of this for myself under https://arrrr.c

Karolin Varner 6 May 28, 2022
🐍 VerificaC19 SDK implementation for Python

VerificaC19 Python SDK 🐍 VerificaC19 SDK implementation for Python. Requirements Python version = 3.7 Make sure zbar is installed in your system For

Lotrèk 10 Jan 14, 2022
GitHub Actions Docker training

GitHub-Actions-Docker-training Training exercise repository for GitHub Actions using a docker base. This repository should be cloned and used for trai

GitHub School 1 Jan 21, 2022
QuickStart specific rules for cfn-python-lint

AWS Quick Start cfn-lint rules This repo provides CloudFormation linting rules specific to AWS Quick Start guidelines, for more information see the Co

AWS Quick Start 12 Jul 30, 2022
Получение интересной информации о любой пиццерии Додо

dodopizza-abuse Получение инфорации о выбранной пиццерии Додо Установка и запуск на Linux Устанавливаем git и python: apt-get update && apt-get -y ins

Хозя 24 Nov 02, 2022
Twitch Linux Typer

Twitch Linux Typer The most cursed Twitch chat bot Listens to twitch chat, and then types it handles hotkeys and button presses via the ^ char, eg ctr

Robin Universe 4 Jun 27, 2022
This repository contains ready to deploy automations on AWS

aws-automation-plugins This repository contains ready to deploy automations on AWS. How-To All projects in this repository contain a deploy.sh file wh

Akesh Patil 8 Sep 20, 2022
Telegram bot with various Sticker Tools

Sticker Tools Bot @Sticker_Tools_Bot A star ⭐ from you means a lot to us! Telegram bot with various Sticker Tools Usage Deploy to Heroku Tap on above

Stark Bots 20 Dec 08, 2022
Create light scenes , voice control, ifttt, fuzzywuzzy speech correction and much more with Tuya light bulbs.

LightBox Features: Auto discover tuya lights Set and create moods (aka: light profiles) Change moods via IFTTT List moods via IFTTT FuzzyWuzzy, speech

Robert Nagtegaal 1 Dec 20, 2021