Sie_banxico - A python class for the Economic Information System (SIE) API of Banco de México

Overview

sie_banxico

PyPi Version

A python class for the Economic Information System (SIE) API of Banco de México.

Args: token (str): A query token from Banco de México id_series (list): A list with the economic series id or with the series id range to query. ** A list must be given even though only one serie is consulted. language (str): Language of the obtained information. 'en' (default) for english or 'es' for spanish

Notes: (1) In order to retrive information from the SIE API, a query token is required. The token can be requested here (2) Each economic serie is related to an unique ID. The full series catalogue can be consulted here

Pypi Installation

pip install sie_banxico

SIEBanxico Class Instance

Querying Monetary Aggregates M1 (SF311408) and M2 (SF311418) Data

 >>> from api_banxico import SIEBanxico
 >>> api = SIEBanxico(token = token, id_series = ['SF311408' ,'SF311418'], language = 'en')

Class documentation and attributes

>>> api.__doc__
'Returns the full class documentation'
>>> api.token
'1b7da065cf574289a2cb511faeXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' # This is an example token
>>> api.series
'SF311408,SF311418'

Methods for modify the arguments of the object

set_token: Change the current query token

>>> api.set_token(token = new_token)

set_id_series: Allows to change the series to query

>>> api.append_id_series(id_series = ['SF311412'])
>>> api.series
'SF311408,SF311418,SF311412'

append_id_series: Allows to update the series to query

>>> api.set_id_series(id_series='SF311408-SF311418')
>>> api.series
'SF311408-SF311418'

GET Request Methods

>>> api = SIEBanxico(token = token, id_series = ['SF311408' ,'SF311418']

get_metadata: Allows to consult metadata of the series

    Allows to consult metadata of the series.
    Returns:
        dict: json response format
>>> api.get_metadata()
{'bmx': {'series': [{'idSerie': 'SF311418', 'titulo': 'Monetary Aggregates M2 = M1 + monetary instruments held by residents', 'fechaInicio': '12/01/2000', 'fechaFin': '11/01/2021', 'periodicidad': 'Monthly', 'cifra': 'Stocks', 'unidad': 'Thousands of Pesos', 'versionada': False}, {'idSerie': 'SF311408', 'titulo': 'Monetary Aggregates M1', 'fechaInicio': '12/01/2000', 'fechaFin': '11/01/2021', 'periodicidad': 'Monthly', 'cifra': 'Stocks', 'unidad': 'Thousands of Pesos', 'versionada': False}]}}

get_lastdata: Returns the most recent published data

Returns the most recent published data for the requested series. Args: pct_change (str, optional): None (default) for levels, "PorcObsAnt" for change rate compared to the previous observation, "PorcAnual" for anual change rate, "PorcAcumAnual" for annual acummulated change rate. Returns: dict: json response format

>>> api.get_lastdata()
{'bmx': {'series': [{'idSerie': 'SF311418', 'titulo': 'Monetary Aggregates M2 = M1 + monetary instruments held by residents', 'datos': [{'fecha': '01/11/2021', 'dato': '11,150,071,721.09'}]}, {'idSerie': 'SF311408', 'titulo': 'Monetary Aggregates M1', 'datos': [{'fecha': '01/11/2021', 'dato': '6,105,266,291.65'}]}]}}

get_timeseries: Allows to consult time series data

    Allows to consult the whole time series data, corresponding to the period defined between the initial date and the final date in the metadata.
    Args:
        pct_change (str, optional): None (default) for levels, "PorcObsAnt" for change rate compared to the previous observation, "PorcAnual" for anual change rate, "PorcAcumAnual" for annual acummulated change rate.
    Returns:
        dict: json response format
>>> api.get_timeseries(pct_change='PorcAnual')
{'bmx': {'series': [{'idSerie': 'SF311418',
    'titulo': 'Monetary Aggregates M2 = M1 + monetary instruments held by residents',
    'datos': [{'fecha': '01/12/2001', 'dato': '12.89'},
     {'fecha': '01/01/2002', 'dato': '13.99'},
     ...
     {'fecha': '01/11/2021', 'dato': '13.38'}],
     'incrementos': 'PorcAnual'}]}}

get_timeseries_range: Returns the data for the period defined

    Returns the data of the requested series, for the defined period.
    Args:
        init_date (str): The date on which the period of obtained data starts. The date must be sent in the format yyyy-mm-dd. If the given date is out of the metadata time range, the oldest value is returned.
        end_date (str): The date on which the period of obtained data concludes. The date must be sent in the format yyyy-mm-dd. If the given date is out of the metadata time range, the most recent value is returned.
        pct_change (str, optional): None (default) for levels, "PorcObsAnt" for change rate compared to the previous observation, "PorcAnual" for anual change rate, "PorcAcumAnual" for annual acummulated change rate.     
    Returns:
        dict: json response format
>>> api.get_timeseries_range(init_date='2000-12-31', end_date='2004-04-01')
{'bmx': {'series': [{'idSerie': 'SF311408',
    'titulo': 'Monetary Aggregates M1',
    'datos': [{'fecha': '01/01/2001', 'dato': '524,836,129.99'},
     {'fecha': '01/02/2001', 'dato': '517,186,605.97'},
     ...
     {'fecha': '01/04/2004', 'dato': '2,306,755,672.89'}]}]}}

Pandas integration for data manipulation (and further analysis)

All the request methods returns a response in json format that can be used with other Python libraries.

The response for the api.get_timeseries_range(init_date='2000-12-31', end_date='2004-04-01') is a nested dictionary, so we need to follow a path to extract the specific values for the series and then transform the data into a pandas object; like a Serie or a DataFrame. For example:

data = api.get_timeseries_range(init_date='2000-12-31', end_date='2004-04-01')

# Extract the Monetary Aggregate M1 data
data['bmx']['series'][0]['datos']
[{'fecha': '01/01/2001', 'dato': '524,836,129.99'},
 ...
 {'fecha': '01/04/2004', 'dato': '799,774,807.43'}]

# Transform the data into a pandas DataDrame
import pandas as pd
df = pd.DataFrame(timeseries_range['bmx']['series'][0]['datos'])
df.head()
        fecha            dato
0  01/01/2001  524,836,129.99
1  01/02/2001  517,186,605.97
2  01/03/2001  509,701,873.04
3  01/04/2001  511,952,430.01
4  01/05/2001  514,845,459.96

Another useful pandas function to transform json formats into a dataframe is 'json_normalize':

df = pd.json_normalize(timeseries_range['bmx']['series'], record_path = 'datos', meta = ['idSerie', 'titulo'])
df['titulo'] = df['titulo'].apply(lambda x: x.replace('Monetary Aggregates M2 = M1 + monetary instruments held by residents', 'Monetary Aggregates M2'))
df.head()
        fecha            dato   idSerie                  titulo
0  01/01/2001  524,836,129.99  SF311408  Monetary Aggregates M1
1  01/02/2001  517,186,605.97  SF311408  Monetary Aggregates M1
2  01/03/2001  509,701,873.04  SF311408  Monetary Aggregates M1
3  01/04/2001  511,952,430.01  SF311408  Monetary Aggregates M1
4  01/05/2001  514,845,459.96  SF311408  Monetary Aggregates M1
df.tail()
         fecha              dato   idSerie                  titulo
75  01/12/2003  2,331,594,974.69  SF311418  Monetary Aggregates M2
76  01/01/2004  2,339,289,328.74  SF311418  Monetary Aggregates M2
77  01/02/2004  2,285,732,239.36  SF311418  Monetary Aggregates M2
78  01/03/2004  2,312,217,167.10  SF311418  Monetary Aggregates M2
79  01/04/2004  2,306,755,672.89  SF311418  Monetary Aggregates M2

Licence

The MIT License (MIT)

By

Dillan Aguirre Sedeño ([email protected])

Owner
Dillan
Dillan
Python SDK for interacting with the Frame.io API.

python-frameio-client Frame.io Frame.io is a cloud-based collaboration hub that allows video professionals to share files, comment on clips real-time,

Frame.io 37 Dec 21, 2022
A Python script to backup all repos (public or private) of a user.

GithubBackupAllRepos A Python script to backup all repos (public or private) of a user. Features Clone public and private repos Load specified SSH key

Podalirius 15 Jan 03, 2023
Spotify playlist anonymizer.

Spotify heavily personalizes auto-generated playlists like Song Radio based on the music you've listened to in the past. But sometimes you want to listen to Song Radio precisely to hear some fresh so

Jakob de Maeyer 9 Nov 27, 2022
Send song lyrics to iMessage users using the Genius lyrics API

pyMessage Send song lyrics to iMessage users using the Genius lyrics API. Setup 1.) Open the main.py file, and add your API key on line 7. 2.) Install

therealkingnull 1 Jan 23, 2022
A Discord bot that generates inspirational quotes & motivating messages whenever a user is sad

Encourage bot is a discord bot that allows users to randomly get Inspirational quotes messages and gives motivational encouragements whenever someone says that he's sad/depressed.

1 Nov 25, 2021
A Telegram Bot to generate permanent Stream and Download links for any Telegram file

Telegram File To Stream Link This bot will give you permanent Stream and Download links for Telegram files Deploy the Bot Press the below button to de

Shadow 80 Dec 16, 2022
Discord Webhook Proxy for Roblox payloads.

RoProxy A Discord webhook proxy passthrough for roblox. Setup Your port and endpoint are in the config.json, make sure both app.py and config.json are

PythonSerious 2 Nov 05, 2021
See GitHub API on terminal

gitbees About gitbees uses the GitHub API to show user data and ``repos` Using Make sure you have a python interpreter and then python gitbees.py Lice

Marcello Belanda 1 Nov 29, 2021
Una herramienta para transmitir mensajes automáticamente a múltiples grupos de chat

chat-broadcast Una herramienta para transmitir mensajes automáticamente a múltiples grupos de chat Setup Librerías Necesitas Python 3 con la librería

Seguimos 2 Jan 09, 2022
Shiny Wechat Pay SDK for Python

WeChat third-party Python SDK master: Read the Documentation Features Common public platforms passively respond and actively call APIs WeChat Pay API

Obrisk 18 Sep 05, 2022
WhatsApp Status Tracker With Python

Warning!! This Repo is Purly educational purpose Don't use this to stalk on others, which is subjective to crime Pre-Req: Telegram bot of your own wit

Vignesh Karunagaran 10 Dec 09, 2022
A simple way to create a request to the coinpayment API with a valid HMAC using your private key and command

Coinpayments Verify TXID Created for Astral Discord bot A simple way to create a request to the coinpayment API with a valid HMAC using your private k

HellSec 1 Nov 07, 2022
Programa capaz de gerar QR Code a partir do link inserido.

QrCodePy Programa capaz de gerar QR Code, a partir do link inserido, em forma de imagem e salvar localmente. Exemplo de saída: Requisitos Pure Python

Jonas Carvalho 4 Sep 09, 2021
API RestFull de uma clinica, onde vai efetuar os agendamentos dos pacientes e mostrar o historicos de cada agendamentos

API REstFull O que tem na API Usado para clinicas. Cadastro de pacientes. Agendamentos de pacientes. Históricos dos agendamentos vinculados com a tabe

Lucas Silva 3 Aug 29, 2022
BLYRIC is a Twitter bot that tweets a song lyric every night.

BLYRIC BLYRIC, a bot that tweets a song lyric every night. Follow on Twitter: @blyric_ Overview BLYRIC is a Twitter bot that tweets a song quote every

Bruno Kenzo Hyodo 6 Oct 05, 2022
An async-ready Python wrapper around FerrisChat's API.

FerrisWheel An async-ready Python wrapper around FerrisChat's API. Installation Instructions Linux: $ python3.9 -m pip install -U ferriswheel Python 3

FerrisChat 8 Feb 08, 2022
A tool for transferring server variable values from one intersect gamedata.db to another

Server Variable Transfer Tool Purpose This tool exists for use with the Intersect Engine (Ascension Game Dev GitHub). Its purpose is to UPDATE one sql

AVild 2 Oct 27, 2021
Python3 based bittrex rest api wrapper

bittrex-rest-api This open source project was created to give an understanding of the Bittrex Rest API v1.1/v3.0 in pearl language. The sample file sh

4 Nov 15, 2022
Best DDoS Attack Script Python3, Cyber Attack With 40 Methods

MXDDoS - DDoS Attack Script With 40 Methods (Code Lang - Python 3) Please Don't Attack '.gov' and '.ir' Websites :) Features And Methods 💣 Layer7 GET

7 Mar 07, 2022
Advanced telegram link in a message attach bot

Attach-Bot-V2 An advanced telegram attach bot Made with Python3 (C) @FayasNoushad Copyright permission under MIT License License - https://github.com

Fayas Noushad 8 Oct 21, 2022