Sie_banxico - A python class for the Economic Information System (SIE) API of Banco de México

Overview

sie_banxico

PyPi Version

A python class for the Economic Information System (SIE) API of Banco de México.

Args: token (str): A query token from Banco de México id_series (list): A list with the economic series id or with the series id range to query. ** A list must be given even though only one serie is consulted. language (str): Language of the obtained information. 'en' (default) for english or 'es' for spanish

Notes: (1) In order to retrive information from the SIE API, a query token is required. The token can be requested here (2) Each economic serie is related to an unique ID. The full series catalogue can be consulted here

Pypi Installation

pip install sie_banxico

SIEBanxico Class Instance

Querying Monetary Aggregates M1 (SF311408) and M2 (SF311418) Data

 >>> from api_banxico import SIEBanxico
 >>> api = SIEBanxico(token = token, id_series = ['SF311408' ,'SF311418'], language = 'en')

Class documentation and attributes

>>> api.__doc__
'Returns the full class documentation'
>>> api.token
'1b7da065cf574289a2cb511faeXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' # This is an example token
>>> api.series
'SF311408,SF311418'

Methods for modify the arguments of the object

set_token: Change the current query token

>>> api.set_token(token = new_token)

set_id_series: Allows to change the series to query

>>> api.append_id_series(id_series = ['SF311412'])
>>> api.series
'SF311408,SF311418,SF311412'

append_id_series: Allows to update the series to query

>>> api.set_id_series(id_series='SF311408-SF311418')
>>> api.series
'SF311408-SF311418'

GET Request Methods

>>> api = SIEBanxico(token = token, id_series = ['SF311408' ,'SF311418']

get_metadata: Allows to consult metadata of the series

    Allows to consult metadata of the series.
    Returns:
        dict: json response format
>>> api.get_metadata()
{'bmx': {'series': [{'idSerie': 'SF311418', 'titulo': 'Monetary Aggregates M2 = M1 + monetary instruments held by residents', 'fechaInicio': '12/01/2000', 'fechaFin': '11/01/2021', 'periodicidad': 'Monthly', 'cifra': 'Stocks', 'unidad': 'Thousands of Pesos', 'versionada': False}, {'idSerie': 'SF311408', 'titulo': 'Monetary Aggregates M1', 'fechaInicio': '12/01/2000', 'fechaFin': '11/01/2021', 'periodicidad': 'Monthly', 'cifra': 'Stocks', 'unidad': 'Thousands of Pesos', 'versionada': False}]}}

get_lastdata: Returns the most recent published data

Returns the most recent published data for the requested series. Args: pct_change (str, optional): None (default) for levels, "PorcObsAnt" for change rate compared to the previous observation, "PorcAnual" for anual change rate, "PorcAcumAnual" for annual acummulated change rate. Returns: dict: json response format

>>> api.get_lastdata()
{'bmx': {'series': [{'idSerie': 'SF311418', 'titulo': 'Monetary Aggregates M2 = M1 + monetary instruments held by residents', 'datos': [{'fecha': '01/11/2021', 'dato': '11,150,071,721.09'}]}, {'idSerie': 'SF311408', 'titulo': 'Monetary Aggregates M1', 'datos': [{'fecha': '01/11/2021', 'dato': '6,105,266,291.65'}]}]}}

get_timeseries: Allows to consult time series data

    Allows to consult the whole time series data, corresponding to the period defined between the initial date and the final date in the metadata.
    Args:
        pct_change (str, optional): None (default) for levels, "PorcObsAnt" for change rate compared to the previous observation, "PorcAnual" for anual change rate, "PorcAcumAnual" for annual acummulated change rate.
    Returns:
        dict: json response format
>>> api.get_timeseries(pct_change='PorcAnual')
{'bmx': {'series': [{'idSerie': 'SF311418',
    'titulo': 'Monetary Aggregates M2 = M1 + monetary instruments held by residents',
    'datos': [{'fecha': '01/12/2001', 'dato': '12.89'},
     {'fecha': '01/01/2002', 'dato': '13.99'},
     ...
     {'fecha': '01/11/2021', 'dato': '13.38'}],
     'incrementos': 'PorcAnual'}]}}

get_timeseries_range: Returns the data for the period defined

    Returns the data of the requested series, for the defined period.
    Args:
        init_date (str): The date on which the period of obtained data starts. The date must be sent in the format yyyy-mm-dd. If the given date is out of the metadata time range, the oldest value is returned.
        end_date (str): The date on which the period of obtained data concludes. The date must be sent in the format yyyy-mm-dd. If the given date is out of the metadata time range, the most recent value is returned.
        pct_change (str, optional): None (default) for levels, "PorcObsAnt" for change rate compared to the previous observation, "PorcAnual" for anual change rate, "PorcAcumAnual" for annual acummulated change rate.     
    Returns:
        dict: json response format
>>> api.get_timeseries_range(init_date='2000-12-31', end_date='2004-04-01')
{'bmx': {'series': [{'idSerie': 'SF311408',
    'titulo': 'Monetary Aggregates M1',
    'datos': [{'fecha': '01/01/2001', 'dato': '524,836,129.99'},
     {'fecha': '01/02/2001', 'dato': '517,186,605.97'},
     ...
     {'fecha': '01/04/2004', 'dato': '2,306,755,672.89'}]}]}}

Pandas integration for data manipulation (and further analysis)

All the request methods returns a response in json format that can be used with other Python libraries.

The response for the api.get_timeseries_range(init_date='2000-12-31', end_date='2004-04-01') is a nested dictionary, so we need to follow a path to extract the specific values for the series and then transform the data into a pandas object; like a Serie or a DataFrame. For example:

data = api.get_timeseries_range(init_date='2000-12-31', end_date='2004-04-01')

# Extract the Monetary Aggregate M1 data
data['bmx']['series'][0]['datos']
[{'fecha': '01/01/2001', 'dato': '524,836,129.99'},
 ...
 {'fecha': '01/04/2004', 'dato': '799,774,807.43'}]

# Transform the data into a pandas DataDrame
import pandas as pd
df = pd.DataFrame(timeseries_range['bmx']['series'][0]['datos'])
df.head()
        fecha            dato
0  01/01/2001  524,836,129.99
1  01/02/2001  517,186,605.97
2  01/03/2001  509,701,873.04
3  01/04/2001  511,952,430.01
4  01/05/2001  514,845,459.96

Another useful pandas function to transform json formats into a dataframe is 'json_normalize':

df = pd.json_normalize(timeseries_range['bmx']['series'], record_path = 'datos', meta = ['idSerie', 'titulo'])
df['titulo'] = df['titulo'].apply(lambda x: x.replace('Monetary Aggregates M2 = M1 + monetary instruments held by residents', 'Monetary Aggregates M2'))
df.head()
        fecha            dato   idSerie                  titulo
0  01/01/2001  524,836,129.99  SF311408  Monetary Aggregates M1
1  01/02/2001  517,186,605.97  SF311408  Monetary Aggregates M1
2  01/03/2001  509,701,873.04  SF311408  Monetary Aggregates M1
3  01/04/2001  511,952,430.01  SF311408  Monetary Aggregates M1
4  01/05/2001  514,845,459.96  SF311408  Monetary Aggregates M1
df.tail()
         fecha              dato   idSerie                  titulo
75  01/12/2003  2,331,594,974.69  SF311418  Monetary Aggregates M2
76  01/01/2004  2,339,289,328.74  SF311418  Monetary Aggregates M2
77  01/02/2004  2,285,732,239.36  SF311418  Monetary Aggregates M2
78  01/03/2004  2,312,217,167.10  SF311418  Monetary Aggregates M2
79  01/04/2004  2,306,755,672.89  SF311418  Monetary Aggregates M2

Licence

The MIT License (MIT)

By

Dillan Aguirre Sedeño ([email protected])

Owner
Dillan
Dillan
This is to notify you via Discord whenever there is a new beacon.

BeaconNotifier-Discord This is to notify you via Discord whenever there is a new beacon. Make sure you have python3 installed Steps: Create a Discord

26 Dec 28, 2022
Check your accounts/tokens fast with our checker!

Discord_Account_Checker How to use? Installing library's pip install -r reqs.txt Loading accounts Load your accounts to accounts.txt file. Launch pyth

1 Jan 11, 2022
unofficial library for discord components(on development)

discord.py-buttons unofficial library for discord buttons(on development) Install pip install --upgrade discord_buttons Example from discord import Cl

kiki7000 129 Dec 31, 2022
Slack bot for monitoring your Metaflow flows!

Metaflowbot - Slack Bot for your Metaflow flows! Metaflowbot makes it fun and easy to monitor your Metaflow runs, past and present. Imagine starting a

Outerbounds 21 Dec 07, 2022
Python wrapper for Wikipedia

Wikipedia API Wikipedia-API is easy to use Python wrapper for Wikipedias' API. It supports extracting texts, sections, links, categories, translations

Martin Majlis 369 Dec 30, 2022
A Script to automate fowarding all new messages from one/many channel(s) to another channel(s), without the forwarded tag.

Channel Auto Message Forward A script to automate fowarding all new messages from one/many channel(s) to another channel(s), without the forwarded tag

16 Oct 21, 2022
Tools untuk krek akun igeh :v

Instalasi pkg update && pkg upgrade -y pkg install python git -y rm -rf InstaCrack git clone https://github.com/AngCyber/InstaCrack pip install reques

Moch Aang Ardiansyah-XD 12 Apr 05, 2022
A customizable, multilanguage Telegram shop bot with Telegram Payments support

Greed A customizable, multilanguage Telegram shop bot with Telegram Payments support! Demo Send a message to @greedtestbot on Telegram to view a demo

Stefano Pigozzi 328 Dec 29, 2022
All in one Search Engine Scrapper for used by API or Python Module. It's Free!

All in one Search Engine Scrapper for used by API or Python Module. How to use: Video Documentation Senginta is All in one Search Engine Scrapper. Wit

33 Nov 21, 2022
Telegram Group Management Bot based on phython !!!

How to setup/deploy. For easiest way to deploy this Bot click on the below button Mᴀᴅᴇ Bʏ Sᴜᴘᴘᴏʀᴛ Sᴏᴜʀᴄᴇ Find This Bot on Telegram A modular Telegram

Mukesh Solanki 5 Nov 17, 2021
A really easy way to display your spotify listening status on spotify.

Spotify playing README A really easy way to display your spotify listening status on READMEs and Websites too! Demo Here's the embed from the site. Cu

Sunrit Jana 21 Nov 06, 2022
IMDbPY is a Python package useful to retrieve and manage the data of the IMDb movie database about movies, people, characters and companies

IMDbPY is a Python package for retrieving and managing the data of the IMDb movie database about movies, people and companies. Revamp notice Starting

Davide Alberani 1.1k Jan 02, 2023
a public repository helping ML/DL engineers and DS to beautify the notebook with minimal coding.

ml-helper-functions a public repository helping ML/DL engineers and DS to beautify the notebook with minimal coding.

Jesal Patel 4 Jun 24, 2021
Bezlik Year Calendar Planner

Bezlik Year Calendar Planner Scribus script for creating year planners on one page A1 paper format. Script is based on Year-Calendar-Script-for-Scribu

Bohdan Bobrowski 2 May 24, 2022
Typed interactions with the GitHub API v3

PyGitHub PyGitHub is a Python library to access the GitHub API v3 and Github Enterprise API v3. This library enables you to manage GitHub resources su

5.7k Jan 06, 2023
Telegram bot that search for the classrooms status of the chosen day and then return all the free classrooms using your preferred time slot

Aule Libere Polimi Since the PoliMi site no longer allows people to search for free classrooms this bot was necessary! It simply search for the classr

Daniele Ferrazzo 16 Nov 09, 2022
Jackrabbit Relay is an API endpoint for stock, forex and cryptocurrency exchanges that accept REST webhooks.

JackrabbitRelay Jackrabbit Relay is an API endpoint for stock, forex and cryptocurrency exchanges that accept REST webhooks. Disclaimer Please note RA

Rose Heart 23 Jan 04, 2023
🕵️‍♂️ Investigate Google Accounts with emails.

Description GHunt is an OSINT tool to extract information from any Google Account using an email. It can currently extract: Owner's name Last time the

mxrch 13.1k Jan 01, 2023
A Recommendation System For Diabetes Detection And Treatment

Diabetes-detection-tg-bot A Recommendation System For Diabetes Detection And Treatment Данная система помогает определить наличие или отсутствие сахар

Alexander Kanonirov 1 Nov 22, 2021
Get charts, top artists and top songs WITHOUT LastFM API

LastFM Get charts, top artists and top songs WITHOUT LastFM API Usage Get stats (charts) We provide many filters and options to customize. Geo filter

4 Feb 11, 2022