Ladder network is a deep learning algorithm that combines supervised and unsupervised learning

Overview

This repository contains source code for the experiments in a paper titled Semi-Supervised Learning with Ladder Networks by A Rasmus, H Valpola, M Honkala, M Berglund, and T Raiko.

Required libraries

Install Theano, Blocks Stable 0.2, Fuel Stable 0.2

Refer to the Blocks installation instructions for details but use tag v0.2 instead. Something along:

pip install git+git://github.com/mila-udem/[email protected]
pip install git+git://github.com/mila-udem/[email protected]

Fuel comes with Blocks, but you need to download and convert the datasets. Refer to the Fuel documentation. One might need to rename the converted files.

fuel-download mnist
fuel-convert mnist --dtype float32
fuel-download cifar10
fuel-convert cifar10
Alternatively, one can use the environment.yml file that is provided in this repo to create an conda environment.
  1. First install anaconda from https://www.continuum.io/downloads. Then,
  2. conda env create -f environment.yml
  3. source activate ladder
  4. The environment should be good to go!

Models in the paper

The following commands train the models with seed 1. The reported numbers in the paper are averages over several random seeds. These commands use all the training samples for training (--unlabeled-samples 60000) and none are used for validation. This results in a lot of NaNs being printed during the trainining, since the validation statistics are not available. If you want to observe the validation error and costs during the training, use --unlabeled-samples 50000.

MNIST all labels
# Full
run.py train --encoder-layers 1000-500-250-250-250-10 --decoder-spec gauss --denoising-cost-x 1000,1,0.01,0.01,0.01,0.01,0.01 --labeled-samples 60000 --unlabeled-samples 60000 --seed 1 -- mnist_all_full
# Bottom
run.py train --encoder-layers 1000-500-250-250-250-10 --decoder-spec gauss --denoising-cost-x 2000,0,0,0,0,0,0 --labeled-samples 60000 --unlabeled-samples 60000 --seed 1 -- mnist_all_bottom
# Gamma model
run.py train --encoder-layers 1000-500-250-250-250-10 --decoder-spec 0-0-0-0-0-0-gauss --denoising-cost-x 0,0,0,0,0,0,2 --labeled-samples 60000 --unlabeled-samples 60000 --seed 1 -- mnist_all_gamma
# Supervised baseline
run.py train --encoder-layers 1000-500-250-250-250-10 --decoder-spec 0-0-0-0-0-0-0 --denoising-cost-x 0,0,0,0,0,0,0 --labeled-samples 60000 --unlabeled-samples 60000 --f-local-noise-std 0.5 --seed 1 -- mnist_all_baseline
MNIST 100 labels
# Full
run.py train --encoder-layers 1000-500-250-250-250-10 --decoder-spec gauss --denoising-cost-x 1000,10,0.1,0.1,0.1,0.1,0.1 --labeled-samples 100 --unlabeled-samples 60000 --seed 1 -- mnist_100_full
# Bottom-only
run.py train --encoder-layers 1000-500-250-250-250-10 --decoder-spec gauss --denoising-cost-x 5000,0,0,0,0,0,0 --labeled-samples 100 --unlabeled-samples 60000 --seed 1 -- mnist_100_bottom
# Gamma
run.py train --encoder-layers 1000-500-250-250-250-10 --decoder-spec 0-0-0-0-0-0-gauss --denoising-cost-x 0,0,0,0,0,0,0.5 --labeled-samples 100 --unlabeled-samples 60000 --seed 1 -- mnist_100_gamma
# Supervised baseline
run.py train --encoder-layers 1000-500-250-250-250-10 --decoder-spec 0-0-0-0-0-0-0 --denoising-cost-x 0,0,0,0,0,0,0 --labeled-samples 100 --unlabeled-samples 60000 --f-local-noise-std 0.5 --seed 1 -- mnist_100_baseline
MNIST 1000 labels
# Full
run.py train --encoder-layers 1000-500-250-250-250-10 --decoder-spec gauss --denoising-cost-x 2000,20,0.1,0.1,0.1,0.1,0.1 --f-local-noise-std 0.2 --labeled-samples 1000 --unlabeled-samples 60000 --seed 1 -- mnist_1000_full
# Bottom-only
run.py train --encoder-layers 1000-500-250-250-250-10 --decoder-spec gauss --denoising-cost-x 2000,0,0,0,0,0,0 --labeled-samples 1000 --unlabeled-samples 60000 --seed 1 -- mnist_1000_bottom
# Gamma model
run.py train --encoder-layers 1000-500-250-250-250-10 --decoder-spec 0-0-0-0-0-0-gauss --denoising-cost-x 0,0,0,0,0,0,10 --labeled-samples 1000 --unlabeled-samples 60000 --seed 1 -- mnist_1000_gamma
# Supervised baseline
run.py train --encoder-layers 1000-500-250-250-250-10 --decoder-spec 0-0-0-0-0-0-0 --denoising-cost-x 0,0,0,0,0,0,0 --labeled-samples 1000 --unlabeled-samples 60000 --f-local-noise-std 0.5 --seed 1 -- mnist_1000_baseline
MNIST 50 labels
# Full model
run.py train --encoder-layers 1000-500-250-250-250-10 --decoder-spec gauss --denoising-cost-x 2000,20,0.1,0.1,0.1,0.1,0.1 --labeled-samples 50 --unlabeled-samples 60000 --seed 1 -- mnist_50_full
MNIST convolutional models
# Conv-FC
run.py train --encoder-layers convv:1000:26:1:1-convv:500:1:1:1-convv:250:1:1:1-convv:250:1:1:1-convv:250:1:1:1-convv:10:1:1:1-globalmeanpool:0 --decoder-spec gauss --denoising-cost-x 1000,10,0.1,0.1,0.1,0.1,0.1,0.1 --labeled-samples 100 --unlabeled-samples 60000 --seed 1 -- mnist_100_conv_fc
# Conv-Small, Gamma
run.py train --encoder-layers convf:32:5:1:1-maxpool:2:2-convv:64:3:1:1-convf:64:3:1:1-maxpool:2:2-convv:128:3:1:1-convv:10:1:1:1-globalmeanpool:6:6-fc:10 --decoder-spec 0-0-0-0-0-0-0-0-0-gauss --denoising-cost-x 0,0,0,0,0,0,0,0,0,1 --labeled-samples 100 --unlabeled-samples 60000 --seed 1  -- mnist_100_conv_gamma
# Conv-Small, supervised baseline. Overfits easily, so keep training short.
run.py train --encoder-layers convf:32:5:1:1-maxpool:2:2-convv:64:3:1:1-convf:64:3:1:1-maxpool:2:2-convv:128:3:1:1-convv:10:1:1:1-globalmeanpool:6:6-fc:10 --decoder-spec 0-0-0-0-0-0-0-0-0-0 --denoising-cost-x 0,0,0,0,0,0,0,0,0,0 --num-epochs 20 --lrate-decay 0.5 --f-local-noise-std 0.45 --labeled-samples 100 --unlabeled-samples 60000 --seed 1 -- mnist_100_conv_baseline
CIFAR models
# Conv-Large, Gamma
./run.py train --encoder-layers convv:96:3:1:1-convf:96:3:1:1-convf:96:3:1:1-maxpool:2:2-convv:192:3:1:1-convf:192:3:1:1-convv:192:3:1:1-maxpool:2:2-convv:192:3:1:1-convv:192:1:1:1-convv:10:1:1:1-globalmeanpool:0 --decoder-spec 0-0-0-0-0-0-0-0-0-0-0-0-gauss --dataset cifar10 --act leakyrelu --denoising-cost-x 0,0,0,0,0,0,0,0,0,0,0,0,4.0 --num-epochs 70 --lrate-decay 0.86 --seed 1 --whiten-zca 3072 --contrast-norm 55 --top-c False --labeled-samples 4000 --unlabeled-samples 50000 -- cifar_4k_gamma
# Conv-Large, supervised baseline. Overfits easily, so keep training short.
./run.py train --encoder-layers convv:96:3:1:1-convf:96:3:1:1-convf:96:3:1:1-maxpool:2:2-convv:192:3:1:1-convf:192:3:1:1-convv:192:3:1:1-maxpool:2:2-convv:192:3:1:1-convv:192:1:1:1-convv:10:1:1:1-globalmeanpool:0 --decoder-spec 0-0-0-0-0-0-0-0-0-0-0-0-0 --dataset cifar10 --act leakyrelu --denoising-cost-x 0,0,0,0,0,0,0,0,0,0,0,0,0 --num-epochs 20 --lrate-decay 0.5 --seed 1 --whiten-zca 3072 --contrast-norm 55 --top-c False --labeled-samples 4000 --unlabeled-samples 50000 -- cifar_4k_baseline
Evaluating models with testset

After training a model, you can infer the results on a test set by performing the evaluate command. An example use after training a model:

./run.py evaluate results/mnist_all_bottom0
Owner
Curious AI
Deep good. Unsupervised better.
Curious AI
To be easier to create backup files for the game StoneShard

StoneShard_save_backup_tool A tool to create backups and load them. Setup Configure the program by opening the "config.json" file. In this file you wi

Lucas V. Moog Brentano 6 Sep 15, 2022
PyUnity is a Python implementation of the Unity Engine, written in C++

PyUnity is a Python implementation of the Unity Engine, written in C++. This is just a fun project and many features have been taken out to make it as easy as possible to create a scene and run it.

PyUnity 206 Jan 03, 2023
Dota2 AI bot - Last Order Dota2 Solo AI

Last Order Dota2 Solo AI 该库提供一个由强化学习训练出的Dota2影魔solo智能体。该智能体通过自我对战的训练方式训练,从随机动作开始学习复杂的策略。玩家可以与该智能体进行影魔solo对战。 对战规则 1.物品方面不可以出凝魂之露,灵魂之戒,魔瓶,真眼。 2.不可以吃符,或

bilibili 365 Jan 05, 2023
A basic quiz game using Python

QuizGame A basic quiz game using Python Passwords for quizzes (NO CAPS LOCK!): -ryzermattishandsome -canisleepwithyou Before using this, please make s

Austin 1 Nov 12, 2021
Advanced guessing game made in only python.

Guessing Game This is a number guessing game written in python which consists of three modes; easy,medium and hard. Each mode contains there own diffi

Ayza 2 Nov 30, 2021
A script to install a Windows game through GOG on Linux

proton-gog-install A script to install a Windows game through GOG on Linux. Based on this gist. Tested on Arch, might work elsewhere. Requirements: Im

5 Dec 28, 2022
Python fitting assistant, cross-platform fitting tool for EVE Online

pyfa What is it? Pyfa, short for python fitting assistant, allows you to create, experiment with, and save ship fittings without being in game. Open s

1.4k Dec 22, 2022
OS Algo Visualization - Operating system algorithm visualization using python pygame library

OS_Algo_Visualization Operating system algorithm visualization using python pyga

Krushang Satani 2 Feb 17, 2022
A program to read, edit, and write save files for the game Railroads! Online

RROSE - v0.3.6 This program is intended to be used as an external tool to Railroads Online server hosts. It will read save files, allow to modify entr

17 Dec 09, 2022
PyGame-Tutorial - Refrence for building games in pygame

PyGame-Tutorial How to build games using the python library PyGame End result Ho

St. Mark's Computer Science Club 2 Jan 09, 2022
A rhythm-based game that automatically generates obstacles based on a song's features.

DISCLAIMER: This is my first coding project, created in December 2019. The game may not be optimized, and looking back on it, there are a lot of chang

Kenneth Huang 1 Dec 27, 2021
2DMC is an abrrieviation for 2 Dimensional Minecraft.

2DMC 2DMC is an abrrieviation for 2 Dimensional Minecraft. This idea is originally created and implemented by Griffpatch on Scratch. This is a persona

DaNub 5 Nov 06, 2022
Input-based tic tac toe game made in only python.

Tic Tac Toe Tic Tac Toe is a game in which two players seek in alternate turns to complete a row, a column, or a diagonal with either three O's or thr

Ayza 5 Jun 26, 2022
N-Queens game made using pygame library

N-Queens N-Queens game using pygame for AIML201 Testing: 1. git clone https://github.com/python-game-dev/N-Queens.git 2. cd N-Queens 3. python main.py

1 Sep 24, 2021
🕹️ Jeu Azul en Python avec 4 IAs 🤖 implémentées, jouable de 1 à 4 joueurs

Projet jeu Azul 🕹️ Jeu Azul en Python avec 4 IAs 🤖 implémentées, jouable de 1 à 4 joueurs Par : Berachem MARKRIA et Tristan MARTINEZ Projet réalisé

Berachem Markria 2 Jun 07, 2022
Tic-Tac-Toe Game in python3 Tkinter

Tic Tac Toe Tic-Tac-Toe Game in python3 Tkinter About: Tic Tac Toe or Noughts and Crosses as called in British is a pencil and paper game for two play

Sai Swarup Yakkala 5 Nov 06, 2022
Unknown Horizons official code repository

Unknown-Horizons based on Fifengine is no longer in development. We are porting it to Godot Engine. Please dont report any new bugs. Only bugfixes wil

Unknown Horizons 1.3k Dec 30, 2022
Allows you to email people wordle spoilers. Very beta, not as many features

wordlespoiler Allows you to email people wordle spoilers. Very beta, not as many features How to Use 1.) Make a new gmail account. Go to settings (Man

0 Jan 04, 2023
A project to san the internet of all open Minecraft servers.

MC-Server-Finder A project that scans the internet to find open Minecraft servers. Install the dependencies by running pip install -r requirements.txt

drakeerv 8 Mar 12, 2022
In the works, creating a new Chess Board and way to Play...

sWJz4KingsChess date started on github.com 11-13-2021 In the works, creating a new Chess Board and way to Play... starting to write this in Pygame, an

Shawn 2 Nov 18, 2021