Ladder network is a deep learning algorithm that combines supervised and unsupervised learning

Overview

This repository contains source code for the experiments in a paper titled Semi-Supervised Learning with Ladder Networks by A Rasmus, H Valpola, M Honkala, M Berglund, and T Raiko.

Required libraries

Install Theano, Blocks Stable 0.2, Fuel Stable 0.2

Refer to the Blocks installation instructions for details but use tag v0.2 instead. Something along:

pip install git+git://github.com/mila-udem/[email protected]
pip install git+git://github.com/mila-udem/[email protected]

Fuel comes with Blocks, but you need to download and convert the datasets. Refer to the Fuel documentation. One might need to rename the converted files.

fuel-download mnist
fuel-convert mnist --dtype float32
fuel-download cifar10
fuel-convert cifar10
Alternatively, one can use the environment.yml file that is provided in this repo to create an conda environment.
  1. First install anaconda from https://www.continuum.io/downloads. Then,
  2. conda env create -f environment.yml
  3. source activate ladder
  4. The environment should be good to go!

Models in the paper

The following commands train the models with seed 1. The reported numbers in the paper are averages over several random seeds. These commands use all the training samples for training (--unlabeled-samples 60000) and none are used for validation. This results in a lot of NaNs being printed during the trainining, since the validation statistics are not available. If you want to observe the validation error and costs during the training, use --unlabeled-samples 50000.

MNIST all labels
# Full
run.py train --encoder-layers 1000-500-250-250-250-10 --decoder-spec gauss --denoising-cost-x 1000,1,0.01,0.01,0.01,0.01,0.01 --labeled-samples 60000 --unlabeled-samples 60000 --seed 1 -- mnist_all_full
# Bottom
run.py train --encoder-layers 1000-500-250-250-250-10 --decoder-spec gauss --denoising-cost-x 2000,0,0,0,0,0,0 --labeled-samples 60000 --unlabeled-samples 60000 --seed 1 -- mnist_all_bottom
# Gamma model
run.py train --encoder-layers 1000-500-250-250-250-10 --decoder-spec 0-0-0-0-0-0-gauss --denoising-cost-x 0,0,0,0,0,0,2 --labeled-samples 60000 --unlabeled-samples 60000 --seed 1 -- mnist_all_gamma
# Supervised baseline
run.py train --encoder-layers 1000-500-250-250-250-10 --decoder-spec 0-0-0-0-0-0-0 --denoising-cost-x 0,0,0,0,0,0,0 --labeled-samples 60000 --unlabeled-samples 60000 --f-local-noise-std 0.5 --seed 1 -- mnist_all_baseline
MNIST 100 labels
# Full
run.py train --encoder-layers 1000-500-250-250-250-10 --decoder-spec gauss --denoising-cost-x 1000,10,0.1,0.1,0.1,0.1,0.1 --labeled-samples 100 --unlabeled-samples 60000 --seed 1 -- mnist_100_full
# Bottom-only
run.py train --encoder-layers 1000-500-250-250-250-10 --decoder-spec gauss --denoising-cost-x 5000,0,0,0,0,0,0 --labeled-samples 100 --unlabeled-samples 60000 --seed 1 -- mnist_100_bottom
# Gamma
run.py train --encoder-layers 1000-500-250-250-250-10 --decoder-spec 0-0-0-0-0-0-gauss --denoising-cost-x 0,0,0,0,0,0,0.5 --labeled-samples 100 --unlabeled-samples 60000 --seed 1 -- mnist_100_gamma
# Supervised baseline
run.py train --encoder-layers 1000-500-250-250-250-10 --decoder-spec 0-0-0-0-0-0-0 --denoising-cost-x 0,0,0,0,0,0,0 --labeled-samples 100 --unlabeled-samples 60000 --f-local-noise-std 0.5 --seed 1 -- mnist_100_baseline
MNIST 1000 labels
# Full
run.py train --encoder-layers 1000-500-250-250-250-10 --decoder-spec gauss --denoising-cost-x 2000,20,0.1,0.1,0.1,0.1,0.1 --f-local-noise-std 0.2 --labeled-samples 1000 --unlabeled-samples 60000 --seed 1 -- mnist_1000_full
# Bottom-only
run.py train --encoder-layers 1000-500-250-250-250-10 --decoder-spec gauss --denoising-cost-x 2000,0,0,0,0,0,0 --labeled-samples 1000 --unlabeled-samples 60000 --seed 1 -- mnist_1000_bottom
# Gamma model
run.py train --encoder-layers 1000-500-250-250-250-10 --decoder-spec 0-0-0-0-0-0-gauss --denoising-cost-x 0,0,0,0,0,0,10 --labeled-samples 1000 --unlabeled-samples 60000 --seed 1 -- mnist_1000_gamma
# Supervised baseline
run.py train --encoder-layers 1000-500-250-250-250-10 --decoder-spec 0-0-0-0-0-0-0 --denoising-cost-x 0,0,0,0,0,0,0 --labeled-samples 1000 --unlabeled-samples 60000 --f-local-noise-std 0.5 --seed 1 -- mnist_1000_baseline
MNIST 50 labels
# Full model
run.py train --encoder-layers 1000-500-250-250-250-10 --decoder-spec gauss --denoising-cost-x 2000,20,0.1,0.1,0.1,0.1,0.1 --labeled-samples 50 --unlabeled-samples 60000 --seed 1 -- mnist_50_full
MNIST convolutional models
# Conv-FC
run.py train --encoder-layers convv:1000:26:1:1-convv:500:1:1:1-convv:250:1:1:1-convv:250:1:1:1-convv:250:1:1:1-convv:10:1:1:1-globalmeanpool:0 --decoder-spec gauss --denoising-cost-x 1000,10,0.1,0.1,0.1,0.1,0.1,0.1 --labeled-samples 100 --unlabeled-samples 60000 --seed 1 -- mnist_100_conv_fc
# Conv-Small, Gamma
run.py train --encoder-layers convf:32:5:1:1-maxpool:2:2-convv:64:3:1:1-convf:64:3:1:1-maxpool:2:2-convv:128:3:1:1-convv:10:1:1:1-globalmeanpool:6:6-fc:10 --decoder-spec 0-0-0-0-0-0-0-0-0-gauss --denoising-cost-x 0,0,0,0,0,0,0,0,0,1 --labeled-samples 100 --unlabeled-samples 60000 --seed 1  -- mnist_100_conv_gamma
# Conv-Small, supervised baseline. Overfits easily, so keep training short.
run.py train --encoder-layers convf:32:5:1:1-maxpool:2:2-convv:64:3:1:1-convf:64:3:1:1-maxpool:2:2-convv:128:3:1:1-convv:10:1:1:1-globalmeanpool:6:6-fc:10 --decoder-spec 0-0-0-0-0-0-0-0-0-0 --denoising-cost-x 0,0,0,0,0,0,0,0,0,0 --num-epochs 20 --lrate-decay 0.5 --f-local-noise-std 0.45 --labeled-samples 100 --unlabeled-samples 60000 --seed 1 -- mnist_100_conv_baseline
CIFAR models
# Conv-Large, Gamma
./run.py train --encoder-layers convv:96:3:1:1-convf:96:3:1:1-convf:96:3:1:1-maxpool:2:2-convv:192:3:1:1-convf:192:3:1:1-convv:192:3:1:1-maxpool:2:2-convv:192:3:1:1-convv:192:1:1:1-convv:10:1:1:1-globalmeanpool:0 --decoder-spec 0-0-0-0-0-0-0-0-0-0-0-0-gauss --dataset cifar10 --act leakyrelu --denoising-cost-x 0,0,0,0,0,0,0,0,0,0,0,0,4.0 --num-epochs 70 --lrate-decay 0.86 --seed 1 --whiten-zca 3072 --contrast-norm 55 --top-c False --labeled-samples 4000 --unlabeled-samples 50000 -- cifar_4k_gamma
# Conv-Large, supervised baseline. Overfits easily, so keep training short.
./run.py train --encoder-layers convv:96:3:1:1-convf:96:3:1:1-convf:96:3:1:1-maxpool:2:2-convv:192:3:1:1-convf:192:3:1:1-convv:192:3:1:1-maxpool:2:2-convv:192:3:1:1-convv:192:1:1:1-convv:10:1:1:1-globalmeanpool:0 --decoder-spec 0-0-0-0-0-0-0-0-0-0-0-0-0 --dataset cifar10 --act leakyrelu --denoising-cost-x 0,0,0,0,0,0,0,0,0,0,0,0,0 --num-epochs 20 --lrate-decay 0.5 --seed 1 --whiten-zca 3072 --contrast-norm 55 --top-c False --labeled-samples 4000 --unlabeled-samples 50000 -- cifar_4k_baseline
Evaluating models with testset

After training a model, you can infer the results on a test set by performing the evaluate command. An example use after training a model:

./run.py evaluate results/mnist_all_bottom0
Owner
Curious AI
Deep good. Unsupervised better.
Curious AI
An algorithm to reach a correlated equilibrium in multiplayer games.

Correlatedpy: a python library for distributed learning of correlated equilibrium in multiplayer strategic games. View Demo · Report Bug · Request Fea

Omar Boufous 2 Feb 01, 2022
DouZero_For_HLDDZ_FullAuto: 将DouZero用于欢乐斗地主自动化

DouZero_For_HLDDZ_FullAuto: 将DouZero用于欢乐斗地主自动化 本项目基于DouZero 和 DouZero_For_Happy_DouDiZhu 环境配置请移步项目DouZero 模型默认为ADP,更换模型请修改main.py中的模型路径 运行main.py即可 在原

322 Dec 25, 2022
pygame is a Free and Open Source python programming language library for making multimedia applications like games built on top of the excellent SDL library. C, Python, Native, OpenGL.

pygame is a Free and Open Source python programming language library for making multimedia applications like games built on top of the excellent SDL library. C, Python, Native, OpenGL.

pygame 5.6k Jan 01, 2023
A game made similar as space inveders with pygame

space-inveders-pygame a game made similar as space inveders with pygame . . . if you are using it make sure to change audio and imgs file i do no own

Volt_L18 2 Dec 26, 2021
Wordlebot - A simple Wordle puzzle solver in python

WordleBot A simple search-based puzzle solver for Wordle, built in Python. Inspi

Rob Kimball 2 Jan 27, 2022
Racing Fire - A simple game made with pygame.

Racing Fire A simple game in the making. Using pygame, this game is made to feel like an old arcade game. I developed a simple controller for it with

Builder212 1 Nov 09, 2021
This is a simple rock paper scissor game created with python.

This is a simple rock paper scissor game created with python.

Fayas Noushad 3 Feb 04, 2022
Cricket game using PYQT

Cricket-game-using-PYQT This is a Fantasy cricket Desktop application build in p

Sanket Mane 1 Jan 03, 2022
N-Queens game made using pygame library

N-Queens N-Queens game using pygame for AIML201 Testing: 1. git clone https://github.com/python-game-dev/N-Queens.git 2. cd N-Queens 3. python main.py

1 Sep 24, 2021
A project to san the internet of all open Minecraft servers.

MC-Server-Finder A project that scans the internet to find open Minecraft servers. Install the dependencies by running pip install -r requirements.txt

drakeerv 8 Mar 12, 2022
Wordle-helper: python script to help solving wordle game

wordle-helper This is a python script to help solving wordle game 5-letter-word-

MD Nur Ahmed 2 Feb 08, 2022
A python3 project for generating WorldEdit shematics for the MineClone2 game for Minetest from images.

MineClone2 MapArt This is a python3 project you can use with the MineClone2 game for Minetest. This project take an image and output a WorldEdit shema

3 Jan 06, 2023
PLVRA is a TUI (Terminal User Interface) implementation of wordle / termo in portuguese, written in Python

PLVRA is a TUI (Terminal User Interface) implementation of wordle / termo in portuguese, written in Python

Enzo Shiraishi 1 Feb 11, 2022
XPlaneROS is a ROS wrapper for the XPlane-11 flight simulator.

XPlaneROS XPlaneROS is a ROS wrapper for the XPlane-11 flight simulator. The wrapper provides functionality for extracting aircraft data from the simu

AirLab Stacks 26 Dec 04, 2022
3D online shooter written on Panda3D 1.10.10 and Python 3.10.1

на русском itch.io page Droid Game 3D This is a fresh game that was developed using the Panda3D game engine and Python language in the PyCharm IDE (I

Marcus Kemaul 5 Jun 04, 2022
A Neural Network based chess engine and GUI made with Python and Tensorflow/Keras.

Haxaw-Chess Haxaw: Haxaw is the Neural Network based chess engine made with Python and Tensorflow/Keras. Also uses the python-chess library. (WIP: Imp

Sarthak Bharadwaj 8 Dec 10, 2022
A near-exact clone of google chrome's no internet game, or the "google dinosaur game", with some additions and extras.

dinoGame A near-exact clone of google chrome's no internet game, or the "google dinosaur game", with some additions and extras. Installation Download

1 Oct 26, 2021
2D Minecraft Clone made with Python & Pygame & OpenGL

2D Minecraft Clone This is a 2D clone of the well-known game Minecraft made in Python using Pygame and ModernGL I started this mostly as a self-improv

Kadir Aksoy 2 Sep 25, 2022
A Game Engine Made in Python with the Pygame Module

MandawEngine A Game Engine Made in Python with the Pygame Module Discord: https://discord.gg/MPPqj9PNt3 Installation To Get The Latest Version of Mand

Mandaw 14 Jun 24, 2022
Racers-API - a game where you have to go around racing with your car, earning money

Racers-API About Racers API is a game where you have to go around racing with yo

3 Jan 09, 2022