Predicting Global Crop Yield for World Hunger

Overview

Project 5: Predicting Global Crop Yield for World Hunger

Problem Statement

You are a team of data scientists hand-picked by the United Nations in order to help come up with a machine learning model to help the UN reach its Zero-Hunger goal by 2030. Currently there are nearly 1 in 8 people who do not have enough food to lead a healthy life. 870 million people do not have enough food to eat. Currently there are 7.9 billion people on the planet. To make things more difficult, the global population has been increasing steadily and is expected to reach 8.5 billion people. Therefore, with some back-of-envelope calculations, you can see that in order to end world hunger by 2030, the UN needs to come up with a strategy for nearly 940 million people at the current rate or up to 1.5 billion if we add all the new people projected to be on the planet as well as the existing number of hungry individuals. Either way, we are talking about nearly 1-1.5 billion people lacking sufficient food. For this reason, your team has been tasked with analyzing global historical data related to crop yields and figuring out how the citizens of the world can use machine learning and data science to understand the most important factors related to crop yield, temperature, rainfall, irrigation, and pesticides.

Project Goal:

  1. Create a model that successfully predicts Crop yield given various basic features related to agriculture on a global scale using longitudinal data

  2. Using this data and these models, can you predict which crops will be the most important crops to target worldwide production and in which continents? What about in which countries?

Executive Summary:

For this work, our main data set was pulled from FAOSTAT (by the Food and Agriculture Databank of the FAO). Our goal was to build various types of regression models in order to predict crop yield, as we felt this parameter is incredibly important to help solve the global hunger crisis and to support the UN mission of ending world hunger by 2030. We first needed to clean the data set by dropping null values and merging available data sets. In the Exploratory Data Analysis, we visualized the cleaned data in order to get a better sense of how crop yield related to other features in the data set. In the modeling phase, we tested various models on two feature sets and prioritized the strongest model that predicted yield for this data set by comparing R2, MAE, RMSE, and MSE scores. We concluded that Adaboost Regressor was the best model and we were able to get a 0.96 R2 score for our testing set. We were able to find which features were most predictive of our target variable, crop yield such as: 'crop potatoes','area' (in hectares), and 'fertilizer use.' Our model was succesfully able to predict crop yield in a global data set. We were able to determine that potatoes have a high yield, but low levels of production, while other crops such as rice and wheat have a high level of production, despite decreasing harvested area, indicating higher agronomic efficiency.

Data Sources

FAO Data

Our dataset was derived from FAOSTAT(The Food and Agriculture Databank of the FAO). Dataset Link

FAO, the Food and Agriculture Organization of the United Nations, is a specialized agency of the United Nations that leads international efforts to defeat global hunger. With over 194 member states, FAO works in over 130 countries worldwide. About FAO

FAOSTAT provides free access to food and agriculture data for over 245 countries and territories and covers all FAO regional groupings from 1961 to the most recent year available. FAOSTAT data are organized within the following domains:

  • Production
  • Food Security and Nutrition
  • Food Balances
  • Trade
  • Prices
  • Land, Input and Sustainability
  • Population and Employment
  • Investment Macro-Economics Indicators
  • Climate Change
  • Forestry

Data Dictionary

Type Description Example
Area_code float64 FAO code associated to the Country 1
Country object Country name Albania
Item_code float64 FAO code associated with the crop 44
Crop object Name of the crop Wheat
Year float64 Calendar year 1961
Area_ha float64 Harvested area for the crop in ha 350000
Yield_hg_ha float64 Yield per crop in hg/ha 14000
Value_N_tonnes float64 Total N applied in the country in tonnes 1000
Value_P_tonnes float64 Total P applied in the country in tonnes 100
Value_K_tonnes float64 Total K applied in the country in tonnes 50
pop_unit object Unit of pop_value (1000 person) 1000 persons
pop_value float64 Number of people to be multiplied by 1000 9169.41

Staple Crop Selection

A crop is a plant that can be grown and harvested for food or profit. By use, crops fall into six categories: food crops, feed crops, fiber crops, oil crops, ornamental crops, and industrial crops (Source). For our research we to selected the most important food crops based on their share of global caloric intake from all sources. The ranking was based on data from the WorldAtlas ranking (Source), wikiepedia (Source) and FAO (Source). We also included barley as it is the fourth most important cultivated cereal in the world (Source). The selected food crops are:

  • Maize
  • Potato
  • Rice, paddy
  • Wheat
  • Sorghum
  • Cassava
  • Barley
  • Soybeans
  • Yams

Fertilizer

For each Crop, we downloaded harvested area and yield data from 1961 through 2019 for all the countries from which FAO collects data. Unfortunately, there are no data on the type and quantity of fertilizer used for each of crop we selected. Since fertilizer is the most important input in crop production we decided to use fertilizer data for the entire country as a metric of the input for each crop. We used data for the three macronutrients : nitrogen total (N), phosphate total (P) and potash total K. Data for K are not as complete as those for N and P, in many cases data prior to 1970 is non-existent.

Population

Data on population were download for each country selected. Values are for 1000 person

Data Import and Handling

All dataset were downloaded as csv. To merge datasets unique keys were created. When merging data for crop and yield the key was “CountryYearCrop”. To merge fertilizer and population data the key was “CountryYear”. After import and the merge columns were renamed for ease of use. Redundant columns were eliminated.

MODELING

The modeling was done using the dataset created after initial data cleaning and EDA, it centered around using two feature sets to train and test the model. These two feature sets were defined as either having crop and continent dummy columns or having crop, continent, and country dummy columns. The distinction between these two were further heightened when looking at the total feature size, while the first feature set only had 19 features, the second feature set which included dummy columns for countries had 189 columns.

We used seven different models for each of these two feature sets. These models were Linear Regression, K-Nearest Neighbors, Decision Tree Regressor, Bagging Regressor, Random Forest Regressor, Ada-Boost Regressor, and a Gradient-Boost Regressor. Through numerous trials, we were able to determine that for both feature sets, Ada-Boost Regressor had the greatest overall performance.

CONCLUSION

  • A machine learning model has value in predicting crop yield and total production

  • Our models can successfully isolate the most important factors for predicting crop yield

  • Crop Yield is generally increasing for all major crops, even while harvested area decreases

  • Crop yield will need to be considered with other types of metrics (crop yield / capita, total production, total production per capita) to get a fuller picture of the global hunger crisis

  • More agronomical data will be necessary to correctly predict each single crop locally

SOFTWARE REQUIREMENTS

Programming language used: Python

Packages prominently used:

Pandas: For data structures and operations for manipulating numerical tables

Numpy: For work on large, multi-dimensional arrays, mathematical functions, and matrices.

Seaborn: Data visualization built on top of Matplotlib and integrates well with Pandas.

Matplotlib: The base data visualization and plotting library for Python, seaborn is built on top of this package

Scikit-Learn: Scikit-learn is a free software machine learning library for the Python programming language. Specific Scikit-Learn libraries used are neighbors, ensemble, pipeline, model selection, metrics, linear model, and pre-processing

Owner
Adam Muhammad Klesc
Hopeful data scientist. Currently in General Assembly and taking their data science immersive course!
Adam Muhammad Klesc
Web interface for browsing, search and filtering recent arxiv submissions

Web interface for browsing, search and filtering recent arxiv submissions

Andrej 4.8k Jan 08, 2023
Expose multicam options in the Blender VSE headers.

Multicam Expose multicam options in the Blender VSE headers. Install Download space_sequencer.py and swap it with the one that comes with the Blender

4 Feb 27, 2022
Generating rent availability info from Effort rent

Rent-info Generating rent availability info from Effort rent Pre-Installation Latest version of python Pip module json, os, requests, datetime, time i

Laixuan 1 Oct 20, 2021
Given an array of integers, calculate the ratios of its elements that are positive, negative, and zero.

Given an array of integers, calculate the ratios of its elements that are positive, negative, and zero. Print the decimal value of each fraction on a new line with places after the decimal.

Shruti Dhave 2 Nov 29, 2021
uMap lets you create maps with OpenStreetMap layers in a minute and embed them in your site.

uMap project About uMap lets you create maps with OpenStreetMap layers in a minute and embed them in your site. Because we think that the more OSM wil

771 Dec 29, 2022
A simple chatbot that I made for school project

Chatbot: Python A simple chatbot that I made for school Project. Tho this chatbot is dumb sometimes, but it's not too bad lol. Check it Out! FAQ How t

Prashant 2 Nov 13, 2021
Funchacks - Fun module which is a small set of utilities

funchacks 👋 Introduction Funchacks is a fun module that provides a small packag

DenyS 6 Aug 04, 2022
HiQ - A Modern Observability System

🦉 A Modern Observability System HiQ is a declarative, non-intrusive, dynamic and transparent tracking system for both monolithic application and dist

Oracle Sample Code 40 Aug 21, 2022
Sync SiYuanNote & Yuque.

SiyuanYuque Sync SiYuanNote & Yuque. Install Use pip to install. pip install SiyuanYuque Execute like this: python -m SiyuanYuque Remember to create a

Clouder 23 Nov 25, 2022
Usando Multi Player Perceptron e Regressão Logistica para classificação de SPAM

Relatório dos procedimentos executados e resultados obtidos. Objetivos Treinar um modelo para classificação de SPAM usando o dataset train_data. Class

André Mediote 1 Feb 02, 2022
Tiling manager which runs on top of EWMH window managers.

PyTyle is an extremely versatile and extensible tiling manager that is meant to be used on top of EWMH window managers. Its feature set was modeled af

55 Jul 29, 2021
A python script to run any executable and pass test cases to it's stdin and compare stdout with correct output.

quera_testcase_checker A python script to run any executable and pass test cases to it's stdin and compare stdout with correct output. proper way to u

k3y1 1 Nov 15, 2021
The first Python 1v1.lol triggerbot working with colors !

1v1.lol TriggerBot Afin d'utiliser mon triggerbot, vous devez activer le plein écran sur 1v1.lol sur votre naviguateur (quelque-soit ce dernier). Vous

Venax 5 Jul 25, 2022
A small Python library which gives you the IEEE-754 representation of a floating point number.

ieee754 ieee754 is small Python library which gives you the IEEE-754 representation of a floating point number. You can specify a precision given in t

Bora Canbula 5 Dec 20, 2022
Un Assistente Vocale scritto in Python e altamente personalizzabile

Un Assistente Vocale scritto in Python e altamente personalizzabile

Marco 2 May 06, 2022
A set of scripts for a two-step procedure to measure the value of access to destinations across several modes of travel within a geographic area.

A set of scripts for a two-step procedure to measure the value of access to destinations across several modes of travel within a geographic area.

Institute for Transportation and Development Policy 2 Oct 16, 2022
My attempt at this years Advent of Code!

Advent-of-code-2021 My attempt at this years Advent of Code! day 1: ** day 2: ** day 3: ** day 4: ** day 5: ** day 6: ** day 7: ** day 8: * day 9: day

1 Jul 06, 2022
Howell County, Missouri, COVID-19 data and (unofficial) estimates

COVID-19 in Howell County, Missouri This repository contains the daily data files used to generate my COVID-19 dashboard for Howell County, Missouri,

Jonathan Thornton 0 Jun 18, 2022
Deis v1, the CoreOS and Docker PaaS: Your PaaS. Your Rules.

This repository (deis/deis) is no longer developed or maintained. The Deis v1 PaaS based on CoreOS Container Linux and Fleet has been replaced by Deis

Deis 6.1k Jan 04, 2023
Data Poisoning based on Adversarial Attacks using Non-Robust Features

Data Poisoning based on Adversarial Attacks using Non-Robust Features Usage python main.py [-h] [--gpu | -g GPU] [--eps |-e EPSILON] [--pert | -p PER

Jonathan E. 1 Nov 02, 2021