当前位置:网站首页>高等数学笔记:复合函数的二阶导数与参数方程求解曲率
高等数学笔记:复合函数的二阶导数与参数方程求解曲率
2022-07-17 04:59:00 【繁星依月】
繁星数学随想录·技巧卷
复合函数的二阶导数与参数方程求解曲率
复合函数的二阶导数
通过函数乘法求导运算法则,经计算可得结果:
y = y ( x ) , x = x ( t ) x ′ ( t ) = d x d t , y ′ ( t ) = d y d t , x ′ ′ ( t ) = d 2 x d t 2 , y ′ ′ ( t ) = d 2 y d t 2 d 2 y d x 2 = [ ] ⋅ y ′ ′ ( t ) − [ ] ⋅ x ′ ′ ( t ) d 2 y d x 2 = [ x ′ ( t ) x ′ ( t ) 3 ] ⋅ y ′ ′ ( t ) − [ y ′ ( t ) x ′ ( t ) 3 ] ⋅ x ′ ′ ( t ) d 2 y d x 2 = [ x ′ ( t ) x ′ ( t ) 3 ] ⋅ y ′ ′ ( t ) − [ y ′ ( t ) x ′ ( t ) 3 ] ⋅ x ′ ′ ( t ) = ∣ x ′ ( t ) x ′ ′ ( t ) y ′ ( t ) y ′ ′ ( t ) ∣ x ′ ( t ) 3 \begin{aligned} & y=y(x) \ \ , \ \ x=x(t)\\ \\ & x'(t)=\frac{dx}{dt} \ , \ y'(t)=\frac{dy}{dt} \ , \ x''(t)=\frac{d^2x}{dt^2} \ , \ y''(t)=\frac{d^2y}{dt^2}\\ \\ & \frac{d^2y}{dx^2}=[\ \ ]\cdot y''(t)-[\ \ ]\cdot x''(t)\\ \\ & \frac{d^2y}{dx^2}=[\frac{x'(t)}{x'(t)^3}]\cdot y''(t)-[\frac{y'(t)}{x'(t)^3}]\cdot x''(t)\\ & \frac{d^2y}{dx^2}=[\frac{x'(t)}{x'(t)^3}]\cdot y''(t)-[\frac{y'(t)}{x'(t)^3}]\cdot x''(t)=\frac{\left|\begin{array}{ll} x'(t) & x''(t) \\ y'(t) & y''(t) \end{array}\right|}{x'(t)^3} \end{aligned} y=y(x) , x=x(t)x′(t)=dtdx , y′(t)=dtdy , x′′(t)=dt2d2x , y′′(t)=dt2d2ydx2d2y=[ ]⋅y′′(t)−[ ]⋅x′′(t)dx2d2y=[x′(t)3x′(t)]⋅y′′(t)−[x′(t)3y′(t)]⋅x′′(t)dx2d2y=[x′(t)3x′(t)]⋅y′′(t)−[x′(t)3y′(t)]⋅x′′(t)=x′(t)3∣∣x′(t)y′(t)x′′(t)y′′(t)∣∣
参数方程求解曲率
曲率公式为: k = ∣ y ′ ′ ( 1 + y ′ 2 ) 3 2 ∣ \displaystyle{ k=\left|\frac{y^{\prime \prime}}{\left(1+y^{\prime 2}\right)^{\frac{3}{2}}}\right| }% k=∣∣(1+y′2)23y′′∣∣ ,这意味着,我们求解曲率的核心诉求转变为求解一阶导和二阶导的值。
由于在复合函数求二阶导的过程中,我们计算二阶导是将 x x x, y y y 分别看作 t t t 的函数,而这也恰恰符合参数方程的形式,于是,对于参数方程的二阶导数,我们依然有与【复合函数的二阶导数】相同的结论。
然后代入曲率公式,经计算化简可以得到:
y = y ( x ) , x = x ( t ) x ′ ( t ) = d x d t , y ′ ( t ) = d y d t , x ′ ′ ( t ) = d 2 x d t 2 , y ′ ′ ( t ) = d 2 y d t 2 d 2 y d x 2 = [ x ′ ( t ) x ′ ( t ) 3 ] ⋅ y ′ ′ ( t ) − [ y ′ ( t ) x ′ ( t ) 3 ] ⋅ x ′ ′ ( t ) = ∣ x ′ ( t ) x ′ ′ ( t ) y ′ ( t ) y ′ ′ ( t ) ∣ x ′ ( t ) 3 k = ∣ x ′ ( t ) y ′ ′ ( t ) − x ′ ′ ( t ) y ′ ( t ) ∣ ( x ′ ( t ) 2 + y ′ ( t ) 2 ) 3 2 = ∣ ∣ x ′ ( t ) x ′ ′ ( t ) y ′ ( t ) y ′ ′ ( t ) ∣ ∣ ( x ′ ( t ) 2 + y ′ ( t ) 2 ) 3 \begin{aligned} & y=y(x) \ \ , \ \ x=x(t)\\ \\ & x'(t)=\frac{dx}{dt} \ , \ y'(t)=\frac{dy}{dt} \ , \ x''(t)=\frac{d^2x}{dt^2} \ , \ y''(t)=\frac{d^2y}{dt^2}\\ & \frac{d^2y}{dx^2}=[\frac{x'(t)}{x'(t)^3}]\cdot y''(t)-[\frac{y'(t)}{x'(t)^3}]\cdot x''(t)=\frac{\left|\begin{array}{ll} x'(t) & x''(t) \\ y'(t) & y''(t) \end{array}\right|}{x'(t)^3} \\ \\ & k = \frac{|x'(t)y''(t)-x''(t)y'(t)|}{(x'(t)^2+y'(t)^2)^{\frac32}} =\frac{\left|\left|\begin{array}{ll} x'(t) & x''(t) \\ y'(t) & y''(t) \end{array}\right|\right|}{(\sqrt{x'(t)^2+y'(t)^2})^3} \\ \end{aligned} y=y(x) , x=x(t)x′(t)=dtdx , y′(t)=dtdy , x′′(t)=dt2d2x , y′′(t)=dt2d2ydx2d2y=[x′(t)3x′(t)]⋅y′′(t)−[x′(t)3y′(t)]⋅x′′(t)=x′(t)3∣∣x′(t)y′(t)x′′(t)y′′(t)∣∣k=(x′(t)2+y′(t)2)23∣x′(t)y′′(t)−x′′(t)y′(t)∣=(x′(t)2+y′(t)2)3∣∣∣∣x′(t)y′(t)x′′(t)y′′(t)∣∣∣∣
在代入方程时,我们可以通过表格法参数方程作为辅助求解曲率(代入数值的手段),
遵循【交叉相乘再相减,平方求和开根号】的原则,
| ′ ' ′ | ′ ′ '' ′′ | |
|---|---|---|
| x x x | x ′ ( t ) = x ′ ( t 0 ) x'(t)=x'(t_0) x′(t)=x′(t0) | x ′ ′ ( t ) = x ′ ′ ( t 0 ) x''(t)=x''(t_0) x′′(t)=x′′(t0) |
| y y y | y ′ ( t ) = y ′ ( t 0 ) y'(t)=y'(t_0) y′(t)=y′(t0) | y ′ ′ ( t ) = y ′ ′ ( t 0 ) y''(t)=y''(t_0) y′′(t)=y′′(t0) |
以题目作为示例:
曲线 { x = t 2 + 2 t y = 3 ln t 上对应于 t = 1 的点处的曲率是 曲线 \left\{\begin{array}{l}x=t^{2}+2 t \\ y=3 \ln t\end{array}\right.\ 上对应于\ t=1\ 的点处的曲率是 曲线{ x=t2+2ty=3lnt 上对应于 t=1 的点处的曲率是
解答过程:
k = ∣ ∣ x ′ ( t ) x ′ ′ ( t ) y ′ ( t ) y ′ ′ ( t ) ∣ ∣ ( x ′ ( t ) 2 + y ′ ( t ) 2 ) 3 = ∣ ∣ ∣ ∣ ( x ′ ( t ) 2 + y ′ ( t ) 2 ) 3 ( 草稿纸写这个即可 ) k =\frac{\left|\left|\begin{array}{ll} x'(t) & x''(t) \\ y'(t) & y''(t) \end{array}\right|\right|}{(\sqrt{x'(t)^2+y'(t)^2})^3}= \frac{\left|\left|\begin{array}{ll} & \\ & \ \ \ \ \ \ \ \ \ \ \end{array}\right|\right|}{(\sqrt{x'(t)^2+y'(t)^2})^3}\ \ (草稿纸写这个即可) k=(x′(t)2+y′(t)2)3∣∣∣∣x′(t)y′(t)x′′(t)y′′(t)∣∣∣∣=(x′(t)2+y′(t)2)3∣∣∣∣ ∣∣∣∣ (草稿纸写这个即可)
| t=1 | ′ ' ′ | ′ ′ '' ′′ |
|---|---|---|
| x x x | 2 t + 2 = 4 2t+2=4 2t+2=4 | 2 2 2 |
| y y y | 3 / t = 3 3/t=3 3/t=3 | − 3 / t 2 = − 3 -3/t^2=-3 −3/t2=−3 |
∣ 4 2 3 − 3 ∣ = − 18 → 18 4 2 + 3 2 = 5 → 5 3 = 125 k = 18 125 \begin{aligned} & \left|\begin{array}{ll} 4 & \ \ \ 2 \\ 3 & -3 \end{array}\right| = -18 \rightarrow \ 18\\ \\ & \sqrt{4^2+3^2}=5\ \rightarrow\ 5^3=125\\ \\ & k=\frac{\ \ 18}{\ \ 125} \end{aligned} ∣∣43 2−3∣∣=−18→ 1842+32=5 → 53=125k= 125 18
解答完毕。
特别鸣谢:公式推导与表格法灵感来源于 C C L CCL CCL .
边栏推荐
- 异或和加密方式的解密的复现
- Extreme video compression using the pellet toolbox
- Autojs learning - realize blissful pure land
- Autojs learning-2048 small game automation
- 用FastApi进行WEB开发
- And predicts that nerf will eventually replace deepfake
- 手机平台上的用户空间锁概述
- Static attributes and static methods of class in JS
- Redis cluster interview questions
- 摄像头切换
猜你喜欢
![[unity] interactive double click](/img/28/8c9c3dd9de413ff8e6373ea111b04f.png)
[unity] interactive double click

Usage scenarios and usage of judgment and rounding down in MySQL

Unit UMP Packaging Black Screen issue Summary

minio安装部署及使用

UE-插件 ElectronicNodes 5.0.0/4.23-4.27

【Lipschitz】基于matlab的Lipschitz李氏指数仿真

TiDB 性能优化概述

Advanced query of MySQL table
![Money making master applet [latest version 5.9.9] mall / instant withdrawal of commission / distribution promotion / phone recharge / is meituan hungry for takeout](/img/8b/29027c2dee4ef764bb2e4b5b499a23.jpg)
Money making master applet [latest version 5.9.9] mall / instant withdrawal of commission / distribution promotion / phone recharge / is meituan hungry for takeout

EasyExcel简单使用
随机推荐
RK1126实现画中画功能 picture in picture for RK 1126
【TA-霜狼_may-《百人计划》】美术2.1 DCC工具链与引擎工具链
Cannot find module ‘process‘ or its corresponding type declarations.
Minio installation, deployment and use
摄像头切换
Record a stored procedure to batch modify the table structure
Pytorch image models (Timm) library
Unit UMP Packaging Black Screen issue Summary
根据日期重新排列数据js
PY3 redis general call
【TA-霜狼_may-《百人计划》】基础渲染光照介绍(一)
【英雄哥七月集训】第 16天:队列
删除文件 unable to find or create trash dirctory
MySQL one line to many lines (split according to specific symbols)
Exploration: pharmaceutical factory system network clock synchronization (NTP time synchronization server)
[论文精读]BERT
TCP/IP 协议
Beidou clock server (NTP server) makes the time of college entrance examination more accurate
赚钱大师小程序【最新版5.9.9】商城/佣金即时提现/分销推广/话费充值/美团饿了么外卖
Architecture and application of secure multiparty computing