当前位置:网站首页>SAR Image: common distribution when fitting clutter
SAR Image: common distribution when fitting clutter
2022-07-18 07:55:00 【Xuan yanru Liu】
Record fitting SAR The commonly used distribution type of image clutter
| Distribution type | explain | CDF | |
|---|---|---|---|
| Normal distribution | f ( x ) = 1 2 π σ e − ( x − μ ) 2 2 σ 2 f(x)=\frac{1}{\sqrt{2 \pi}σ}e^{-\frac{(x-μ)^2}{2σ^2}} f(x)=2πσ1e−2σ2(x−μ)2 | μ by all value , σ 2 \mu Is the mean , \sigma^2 μ by all value ,σ2 Is variance | F ( x ) = ∫ − ∞ x f ( t ) d t F(x)=\int_{-∞}^{x}f(t)dt F(x)=∫−∞xf(t)dt |
| Lognormal distribution | f ( x ) = 1 x 2 π σ e − ( l o g ( x ) − μ ) 2 2 σ 2 , x > 0 f(x)=\frac{1}{x\sqrt{2 \pi}σ}e^{-\frac{(log(x)-μ)^2}{2σ^2}},x>0 f(x)=x2πσ1e−2σ2(log(x)−μ)2,x>0 | ditto | F ( x ) = ∫ 0 x f ( t ) d t F(x)=\int_{0}^{x}f(t)dt F(x)=∫0xf(t)dt |
| Rayleigh distribution | f ( x ) = x σ 2 e x p { − x 2 2 σ 2 } f(x)=\frac{x}{\sigma^2}exp\{\frac{-x^2}{2\sigma^2}\} f(x)=σ2xexp{ 2σ2−x2} | σ \sigma σ As the standard deviation | F ( x ) = 1 − e − x 2 2 b 2 F(x)=1-e^{\frac{-x^2}{2b^2}} F(x)=1−e2b2−x2 |
| weibull Distribution | f ( x ) = λ v ( x v ) λ − 1 e ( − x v ) λ f(x)=\frac{\lambda}{v}(\frac{x}{v})^{\lambda-1}e^{(-\frac{x}{v})^\lambda} f(x)=vλ(vx)λ−1e(−vx)λ | λ \lambda λ For shape parameters , v v v It is a scale parameter | F ( x ) = 1 − e ( − x v ) λ F(x)=1-e^{(-\frac{x}{v})^\lambda} F(x)=1−e(−vx)λ |
| gamma Distribution | f ( x ) = λ v Γ ( v ) x v − 1 e − λ x f(x)=\frac{\lambda^v}{\Gamma(v)}x^{v-1}e^{-\lambda x} f(x)=Γ(v)λvxv−1e−λx | λ \lambda λ For shape parameters , v v v It is a scale parameter , Γ ( ) \Gamma() Γ() by gamma function | F ( x ) = Γ ( λ x , v ) F(x)=\Gamma(\lambda x,v) F(x)=Γ(λx,v) |
| K K K Distribution | f ( x ) = 2 v Γ ( λ ) ( x 2 v ) λ K λ − 1 ( x λ ) , x > 0 f(x)=\frac{2}{v\Gamma(\lambda)}(\frac{x}{2v})^{\lambda}K_{\lambda-1}(\frac{x}{\lambda}),x>0 f(x)=vΓ(λ)2(2vx)λKλ−1(λx),x>0 | λ \lambda λ For shape parameters , v v v It is a scale parameter | F ( x ) = ∫ 0 x f ( t ) d t F(x)=\int_{0}^{x}f(t)dt F(x)=∫0xf(t)dt |
| G 0 G^0 G0 Distribution | f ( x ) = 2 n n Γ ( n − λ ) x 2 n − 1 v λ Γ ( n ) Γ ( − λ ) ( v + n x 2 ) ( n − λ ) , − λ , v , n , x > 0 f(x)=\frac{2n^n\Gamma(n-\lambda)x^{2n-1}}{v^{\lambda}\Gamma(n)\Gamma(-\lambda)(v+nx^2)^(n-\lambda)},\\-\lambda,v,n,x>0 f(x)=vλΓ(n)Γ(−λ)(v+nx2)(n−λ)2nnΓ(n−λ)x2n−1,−λ,v,n,x>0 | n n n Is the number of image views , λ \lambda λ For shape parameters , v v v It is a scale parameter , K n K_n Kn by n n n The second kind of modified Bessel function of order | F ( x ) = ∫ 0 x f ( t ) d t F(x)=\int_{0}^{x}f(t)dt F(x)=∫0xf(t)dt |
| In a broad sense gamma Distribution (Li Improved version ) | f ( x ) = ∣ v ∣ κ κ σ Γ ( κ ) ( x σ ) κ v − 1 e x p { − κ ( x σ ) v } , ∣ v ∣ , σ , κ , x > 0 f(x)=\frac{\mid v\mid \kappa^{\kappa}}{\sigma\Gamma(\kappa)}(\frac{x}{\sigma})^{\kappa v-1}exp\{-\kappa(\frac{x}{\sigma})^v\},\\ \mid v\mid,\sigma,\kappa, x>0 f(x)=σΓ(κ)∣v∣κκ(σx)κv−1exp{ −κ(σx)v},∣v∣,σ,κ,x>0 | κ \kappa κ For shape parameters , σ \sigma σ It is a scale parameter , v v v Is the power parameter , Also known as the second shape parameter | F ( x ) = { Γ ( κ ( x σ ) v , κ ) , v > 0 1 − Γ ( κ ( x σ ) v , κ ) , v < 0 F(x)=\left\{\begin{aligned}\Gamma(\kappa(\frac{x}{\sigma})^v,\kappa),v>0\\ 1-\Gamma(\kappa(\frac{x}{\sigma})^v,\kappa),v<0\end{aligned}\right. F(x)=⎩⎪⎨⎪⎧Γ(κ(σx)v,κ),v>01−Γ(κ(σx)v,κ),v<0 |
边栏推荐
- 想到多线程并发就心虚?先来巩固下这些线程基础知识吧!
- [brother hero July training] day 15: depth first search
- 【详细教程】一文参透MongoDB聚合查询
- openGauss 联合产业界创新,共建开源数据库根社区
- One question per day · 648 Word replacement · prefix tree
- leetcode 605. Can place flowers planting problem (simple)
- 337. Looting · dynamic planning
- vscode默认新建目录重叠
- 软件架构与设计(四)-----数据流架构
- Simple understanding of CAS and AQS
猜你喜欢
随机推荐
Several things I want to understand about being laid off at the age of 30
今天,深圳华强北又跑出一个芯片IPO
Matlab:数据集读取 imageDatastore() 的用法
CAS与AQS简单理解
李沐动手学深度学习V2-目标检测SSD
美团一面:@Transactional 原理和常见的坑?
记录Yolov5的使用(1)
Numpy gets a row and a column of a two-dimensional array
Meituan's one-sided experience and detailed answers
Record the use of yolov5 (1)
Talk about how to write a programmer's resume (help modify your resume)
Why can MySQL temporary tables have duplicate names?
One question per day · 1252 Number of odd cells · simulation optimization
redHat7.9配置yum源
Unity IoTAR物联网增强现实教程
Pytorch中torch.repeat()函数解析
C#小技巧 获取枚举所有枚举值
Firewall ha configuration
每日一题·1252.奇数值单元格的数目·模拟优化
VSCode【因为在此系统上禁止运行脚本】









