2021 Real Robot Challenge Phase2 attemp

Overview

Real_Robot_Challenge_Phase2_AE_attemp

We(team name:thriftysnipe) are the first place winner of Phase1 in 2021 Real Robot Challenge.
Please see this page for more details: https://real-robot-challenge.com/leaderboard
To see more details about out Phase1 works: https://github.com/wq13552463699/Real_Robot_challenge
We were granted the access to Phase 2.

I am sorry, the project is too complex with too much large files, It is too hard to upload them all on Github. I just attached a part of the core code here for you to take a quick lreview. If you think my attempts is approriate, you can go to this Google Drive to download the full project file(all codes, results, trained models, environmental files,.etc):
https://drive.google.com/file/d/14vjCrWU6vzMdXxVSR2FeskMvuQpgqWqM/view?usp=sharing

RRC phase2 task description:

Randomly place 25 dices with the size of 0.01x0.01x0.01m in the environment. Use own controller to drive the three-finger robot to rearrange the dice to a specific pattern. Unfortunately, due to the set task is too difficult, no team could complete the task on the actual robot, so all teams with record are awarded third place in this phase. But I think our attempt has a reference value, if later scholars conduct related research, our method may be useful.

Our considerations:

We consider using a reinforcement learning algorithm as the controller in this phase. However, in this phase, information that can play as observations, such as coordinates and orientation of the dices, cannot be obtained from the environment directly but they are crucial for RL to run.
The alternative observations we can use are the images of the three cameras set in 3 different angles in the environment and their segmentation masks. We picked segmentation masks rather than the raw images since the attendance of noise and redundancy in the raw images were too much. Please see the following segmentation mask example(RGB's 3 channels represent segmentation masks from 3 different angles).

The segmentation masks have the dimension of 270x270x3, if directly passing it to the RL agent, which would lead to computational explosion and hard to converge. Hence, we planned to use some means to extract the principal components that can play as observations from it. In addition, the observation value also includes readable read-robot data(joint angle of the robot arm, end effector position, end effector speed, etc.).

Segmentation mask dimensionality reduction

This is the most important part of this task. We tried different methods, such as GAN, VAE, AE, to extract the principal conponents from the images. The quality of data dimensionality reduction can be easily seem from the discripency of reconstructed and oringinal images or the loss curves. After many trials(adjusting hyperparameters, network structure, depth, etc.), we got different trained VAE, GAN and AE models. We conducted offline tests on the obtained model and compared the results, we were surprised to find that the AE performed the best. When the latent of AE is 384, the quality of the reconstructed image is the best. The result is shown in the figure below.

The loss function also converges to an acceptable range:

Build up observation and trian RL agent.

We use the best AE encoder to deal with the segmentation masks to generate the observation and stitch with the readable data. The structure of the overall obervation is shown as follow:
We fed the above observations to several current cutting-edge model based and model free reinforcement learning algorithms, including DDPG+HER, PPO, SLAC, PlaNet and Dreamer. We thought it would work and enable the agent to learn for somewhat anyway. But it is a pity that after many attempts, the model still didn't have any trend to converge. Due to time limited, our attempts were over here.

Some reasons might lead to fail

  1. We used AE as the observation model. Although the AE's dimensionality reduction capability were the best, the latent space of AE were disordered and didn't make sense to RL agent. The observations passed to the RL must be fixed and orderly. Continuous delivery of unfixed data caused a dimensional disaster. For example, the third number in the observation vector passed at t1 represents 'infos of the 1st dice', and the number on the same position at t2 represents the 'infos of the 3rd dice'. This disorderly change with time makes RL very confused.
  2. The extracted latent space from segmentation mask dominates the observations, making RL ignore the existence of robots. The latent space size is 384, but which for the robot data is 27. The two are far apart, and there is a big data bias.
  3. Robot arm blocked the dices, segmentation masks can only represent a part of the dice. This problem cannot be avoided and can only be solved by more powerful image processing technology. This is also a major challenge in the current Image-based RL industry

Contribution

Pull requests are welcome. For major changes, please open an issue first to discuss what you would like to change. Please make sure to update tests as appropriate.

Owner
Qiang Wang
PhD at UCD. Research interest: Reinforcement Learning; Computer vision&Touch; Representation learning
Qiang Wang
Poupool is an overflow swimming pool control software

Poupool - The swimming pool controller Poupool is a swimming pool control software. It is based on Transitions, Pykka and Paho MQTT. The user interfac

Cyril Jaquier 8 Jul 18, 2022
A simple non-official manager interface I'm using for my Raspberry Pis.

My Raspberry Pi Manager Overview I have two Raspberry Pi 4 Model B devices that I hooked up to my two TVs (one in my bedroom and the other in my new g

Christian Deacon 21 Jan 04, 2023
Simples Keylogger para Windows com um autoboot implementado no sistema

MKW Keylogger Keylogger simples para Windos com um autoboot implementado no sistema, o malware irá capturar pressionamentos de tecla e armazená-lo em

3 Jul 03, 2021
Christmasvillage-rpi - Raspberry Pi relay controller for ChristmasVillage.io

ChristmasVillage.io Relay Controller Links ChristmasVillage.io - Live Stream & Controls Youtube Instagram About This repository controls the light rel

Grant Windes 2 Feb 15, 2022
Estimation of whether or not the persons given information will have diabetes.

Diabetes Business Problem : It is desired to develop a machine learning model that can predict whether people have diabetes when their characteristics

Barış TOKATLIOĞLU 0 Jan 20, 2022
Python script: Enphase Envoy mqtt json for Home Assistant

A Python script that takes a real time stream from Enphase Envoy and publishes to a mqtt broker. This can then be used within Home Assistant or for other applications. The data updates at least once

29 Dec 27, 2022
The project is an open-source and low-cost kit to get started with underactuated robotics.

Torque Limited Simple Pendulum Introduction The project is an open-source and low-cost kit to get started with underactuated robotics. The kit targets

34 Dec 14, 2022
Extremely simple PyBadge examples to demonstrate different aspects of CircuitPython using PyBadge hardware.

BeginnerPyBadge I purchased a PyBadge recently. I'm new to hardware. I was surprised how hard it was to find easy examples demonstrating how different

Rubini LaForest 2 Oct 21, 2021
Resmed_myair_sensors - This is a Home Assistant custom component to pull daily CPAP data from ResMed's myAir service using an undocumented API

resmed_myair This component will set up the following platforms. Platform Description sensor Show info from the myAir API. Installation Using the tool

Preston Tamkin 17 Dec 29, 2022
A Python class for controlling the Pimoroni RGB Keypad for Raspberry Pi Pico

rgbkeypad A Python class for controlling the Pimoroni RGB Keypad for the Raspberry Pi Pico. Compatible with MicroPython and CircuitPython. keypad = RG

Martin O'Hanlon 43 Nov 11, 2022
A blender 2.9x addon for managing camera settings

TMG-Camera-Tools A blender 2.9x addon for managing camera settings Tutorial showcasing current features

Mainman002 12 Apr 16, 2022
🔆 A Python module for controlling power and brightness of the official Raspberry Pi 7

rpi-backlight A Python module for controlling power and brightness of the official Raspberry Pi 7" touch display. Note: This GIF was created using the

Linus Groh 238 Jan 08, 2023
A Python program that makes it easy to manage modules on a CircuitPython device!

CircuitPython-Bundle-Manager-v2 A Python program that makes it easy to manage modules on a CircuitPython device! The CircuitPython Bundle Manager v2 i

Ckyiu 1 Dec 18, 2021
Volkswagen ID component for Home Assistant

Volkswagen ID component for Home Assistant This folder contains both a generic Python 3 library for the Volkswagen ID API and a component for Home Ass

55 Jan 07, 2023
Home Assistant component to handle key atom

KeyAtome Home Assistant component to handle key atom, a Linky-compatible device made by Total/Direct-Energie. Installation Either use HACS (default),

18 Dec 21, 2022
Controlling fireworks with micropython

Controlling-fireworks-with-micropython How the code works line 1-4 from machine

Montso Mokake 1 Jan 08, 2022
Repo for the esp32s2 version of the Wi-Fi Nugget

Repo for the esp32s2 version of the Wi-Fi Nugget

HakCat 30 Nov 05, 2022
Setup DevTerm to be a cool non-GUI device

DevTerm hobby project I bought this amazing device: DevTerm A-0604. It has a beefy ARM processor, runs a custom version of Armbian, embraces Open Sour

Alex Shteinikov 9 Nov 17, 2022
Code for the paper "Planning with Diffusion for Flexible Behavior Synthesis"

Planning with Diffusion Training and visualizing of diffusion models from Planning with Diffusion for Flexible Behavior Synthesis. Guided sampling cod

Michael Janner 310 Jan 07, 2023
Turns a compatible Raspberry Pi device into a smart USB drive for PS4/PS5.

PSBerry A WIP project for Raspberry Pi, which turns a compatible RPI device into a smart USB drive for PS4/PS5. Allows for save management of PS4 game

Filip Tomaszewski 2 Jan 15, 2022