2021 Real Robot Challenge Phase2 attemp

Overview

Real_Robot_Challenge_Phase2_AE_attemp

We(team name:thriftysnipe) are the first place winner of Phase1 in 2021 Real Robot Challenge.
Please see this page for more details: https://real-robot-challenge.com/leaderboard
To see more details about out Phase1 works: https://github.com/wq13552463699/Real_Robot_challenge
We were granted the access to Phase 2.

I am sorry, the project is too complex with too much large files, It is too hard to upload them all on Github. I just attached a part of the core code here for you to take a quick lreview. If you think my attempts is approriate, you can go to this Google Drive to download the full project file(all codes, results, trained models, environmental files,.etc):
https://drive.google.com/file/d/14vjCrWU6vzMdXxVSR2FeskMvuQpgqWqM/view?usp=sharing

RRC phase2 task description:

Randomly place 25 dices with the size of 0.01x0.01x0.01m in the environment. Use own controller to drive the three-finger robot to rearrange the dice to a specific pattern. Unfortunately, due to the set task is too difficult, no team could complete the task on the actual robot, so all teams with record are awarded third place in this phase. But I think our attempt has a reference value, if later scholars conduct related research, our method may be useful.

Our considerations:

We consider using a reinforcement learning algorithm as the controller in this phase. However, in this phase, information that can play as observations, such as coordinates and orientation of the dices, cannot be obtained from the environment directly but they are crucial for RL to run.
The alternative observations we can use are the images of the three cameras set in 3 different angles in the environment and their segmentation masks. We picked segmentation masks rather than the raw images since the attendance of noise and redundancy in the raw images were too much. Please see the following segmentation mask example(RGB's 3 channels represent segmentation masks from 3 different angles).

The segmentation masks have the dimension of 270x270x3, if directly passing it to the RL agent, which would lead to computational explosion and hard to converge. Hence, we planned to use some means to extract the principal components that can play as observations from it. In addition, the observation value also includes readable read-robot data(joint angle of the robot arm, end effector position, end effector speed, etc.).

Segmentation mask dimensionality reduction

This is the most important part of this task. We tried different methods, such as GAN, VAE, AE, to extract the principal conponents from the images. The quality of data dimensionality reduction can be easily seem from the discripency of reconstructed and oringinal images or the loss curves. After many trials(adjusting hyperparameters, network structure, depth, etc.), we got different trained VAE, GAN and AE models. We conducted offline tests on the obtained model and compared the results, we were surprised to find that the AE performed the best. When the latent of AE is 384, the quality of the reconstructed image is the best. The result is shown in the figure below.

The loss function also converges to an acceptable range:

Build up observation and trian RL agent.

We use the best AE encoder to deal with the segmentation masks to generate the observation and stitch with the readable data. The structure of the overall obervation is shown as follow:
We fed the above observations to several current cutting-edge model based and model free reinforcement learning algorithms, including DDPG+HER, PPO, SLAC, PlaNet and Dreamer. We thought it would work and enable the agent to learn for somewhat anyway. But it is a pity that after many attempts, the model still didn't have any trend to converge. Due to time limited, our attempts were over here.

Some reasons might lead to fail

  1. We used AE as the observation model. Although the AE's dimensionality reduction capability were the best, the latent space of AE were disordered and didn't make sense to RL agent. The observations passed to the RL must be fixed and orderly. Continuous delivery of unfixed data caused a dimensional disaster. For example, the third number in the observation vector passed at t1 represents 'infos of the 1st dice', and the number on the same position at t2 represents the 'infos of the 3rd dice'. This disorderly change with time makes RL very confused.
  2. The extracted latent space from segmentation mask dominates the observations, making RL ignore the existence of robots. The latent space size is 384, but which for the robot data is 27. The two are far apart, and there is a big data bias.
  3. Robot arm blocked the dices, segmentation masks can only represent a part of the dice. This problem cannot be avoided and can only be solved by more powerful image processing technology. This is also a major challenge in the current Image-based RL industry

Contribution

Pull requests are welcome. For major changes, please open an issue first to discuss what you would like to change. Please make sure to update tests as appropriate.

Owner
Qiang Wang
PhD at UCD. Research interest: Reinforcement Learning; Computer vision&Touch; Representation learning
Qiang Wang
For use with an 8-bit parallel TFT touchscreen using micropython

ILI9341-parallel-TFT-driver-for-micropython For use with an 8-bit parallel TFT touchscreen using micropython. Many thanks to prenticedavid and his MCU

3 Aug 02, 2022
Component for deep integration LedFx from Home Assistant.

LedFX for Home Assistant Component for deep integration LedFx from Home Assistant. Table of Contents FAQ Install Config Performance FAQ Q. What versio

Dmitry Mamontov 28 Dec 13, 2022
BMP180 sensor driver for Home Assistant used in Raspberry Pi

BMP180 sensor driver for Home Assistant used in Raspberry Pi Custom component BMP180 sensor for Home Assistant. Copy the content of this directory to

747Developments 1 Dec 17, 2021
Smart EQ connect - Custom Integration for Home Assistant

Smart EQ Connect platform as a Custom Component for Home Assistant.

Rene Nulsch 2 Jan 04, 2022
Programmable Rainbow Redstone Computer

Programmable Rainbow Redstone Computer Table of contents What is it? Program flasher How to use it What is it? PRRC is Programmable Rainbow Redstone C

Fern H 2 Jun 07, 2022
Example Python code for building RPi-controlled robotic systems

RPi Example Code Example Python code for building RPi-controlled robotic systems These python files have been compiled / developed by the Neurobionics

Elliott Rouse 2 Feb 04, 2022
Hourglass on the pi pico using circuitpython

hourglass-on-pico "Hourglass" on the raspberry pi pico using circuitpython circuitpython version 7.0.0 Components used: Raspberry Pi Pico ADXL345 acce

4 Jul 18, 2022
Tools and documentation to aid in modifying the ADI ADALM Pluto firmware

Pluto firmware modifications This repository contains tools and documentation to aid in modifying the ADI ADALM Pluto firmware. Extraction of the Plut

Daniel Estévez 28 Dec 21, 2022
Sensor of Temperature Feels Like for Home Assistant.

Please ⭐ this repo if you find it useful Sensor of Temperature Feels Like for Home Assistant Installation Install from HACS (recommended) Have HACS in

Andrey 60 Dec 25, 2022
Scripts for measuring and displaying thermal behavior on Voron 3D printers

Thermal Profiling Measuring gantry deflection and frame expansion This script runs a series of defined homing and probing routines designed to charact

Jon Sanders 30 Nov 27, 2022
🔆 A Python module for controlling power and brightness of the official Raspberry Pi 7

rpi-backlight A Python module for controlling power and brightness of the official Raspberry Pi 7" touch display. Note: This GIF was created using the

Linus Groh 238 Jan 08, 2023
Andreas Frisch 1 Jan 10, 2022
A Fast, Easy, and User Friendly way to control Robotics Actuators.

T-Motor Controller A Fast, Easy, and User Friendly way to control Robotics Actuators. View Demo · Report Bug · Request Feature Table of Contents About

26 Aug 23, 2022
A Simple Python KeyLogger App

✨ Kurulum Uygulamayı bilgisayarınızda kullana bilmek için bazı işlemler yapmanız gerekiyor. Aşağıdaki yönlendirmeleri takip ederek bunu yapabilirsiniz

VorteX 7 Jun 11, 2022
A LiteX project which builds a SoC with DRAM / HDIM output via the GPDI SYZYGY addon.

ButterStick GPDI LiteX demo A LiteX project which builds a SoC with DRAM / HDIM output via the GPDI SYZYGY addon. Getting started Connect GPDI board t

4 Nov 21, 2021
Add filters (background blur, etc) to your webcam on Linux.

webcam-filters Add filters (background blur, etc) to your webcam on Linux. Video conferencing applications tend to either lack video effects altogethe

Jashandeep Sohi 480 Dec 14, 2022
Get input from OLED Joystick, Runs command, Displays output on OLED Screen (Great for P4wnP1)

p4wnsolo-joyterm Gets text input from OLED Joystick Runs the command you typed Displays output on OLED Screen (Great for P4wnP1 - even better on Raspb

PawnSolo 7 Dec 19, 2022
Example code and projects for FeatherS2 and FeatherS2 Neo

FeatherS2 & FeatherS2 Neo This repo is a collection of code, firmware, and files

Unexpected Maker 5 Jan 01, 2023
Pinion — Nice-looking interactive diagrams for KiCAD PCBs

Pinion — Nice-looking interactive diagrams for KiCAD PCBs Pinion is a simple tool that allows you to make a nice-looking pinout diagrams for your PCBs

Jan Mrázek 297 Jan 06, 2023
Parametric open source reconstructions of Voron printed parts

The Parametric Voron This repository contains Fusion 360 reconstructions of various printed parts from the Voron printers

Matthew Lloyd 26 Dec 19, 2022