当前位置:网站首页># bayesian network ## Laplace approximation
# bayesian network ## Laplace approximation
2022-07-18 19:01:00 【SyncStudy】
bayesian network
Laplace approximation
W M A P = a r g m a x W [ ] \bold{W}_{MAP}=arg max_\bold{W}[] WMAP=argmaxW[]
w r ∗ ∈ R w_r^* \in \mathbb{R} wr∗∈R
[ p ( W ∣ y , X ) ∣ ∣ q ( W ) ] [p(\bold{W}|y,\bold{X})||q(\bold{W})] [p(W∣y,X)∣∣q(W)]
m i n W a s s [ N ( W ; W M A P , H − 1 ) ∣ ∣ N ( W s ; W M A P S , H s − 1 ) ] min Wass [\mathcal{N} (\bold{W};\bold{W}_{MAP}, H^{-1})|| \mathcal{N} (\bold{W}_s; \bold{W}_{MAP}^S, \bold{H}_s^{-1})] minWass[N(W;WMAP,H−1)∣∣N(Ws;WMAPS,Hs−1)]
f ( w ; w ) ≈ f ( w ; w M A P ) + ▽ f ( x ; w ) ∣ W M A P T f(w;w) \approx f(w;w_{MAP})+\triangledown f(x;w)|^T_{W_{MAP}} f(w;w)≈f(w;wMAP)+▽f(x;w)∣WMAPT
y δ = A x + η y_\delta = Ax+\eta yδ=Ax+η
A ∈ R d y × d x A \in \mathbb{R}^{d_y \times d_x} A∈Rdy×dx
η ∼ N ( 0 , σ y 2 I ) \eta \sim \mathcal{N}(0,\sigma^2_y I) η∼N(0,σy2I)
d y < < d x d_y <<d_x dy<<dx
x ∈ R d x x \in \mathbb{R}^{d_x} x∈Rdx
y δ ∈ R d y y_\delta \in \mathbb{R}^{d_y} yδ∈Rdy
w ∗ = a r g m i n w ∈ R d w ∣ ∣ A f ( w ) − y δ ∣ ∣ 2 + λ T V ( F ( w ) ) w^*= \mathop{arg min} \limits_{\bold{w} \in \mathbb{R}^{d_w}} ||\bold{A} f(w) - \bold{y}_\delta||^2+\lambda TV(F(w)) w∗=w∈Rdwargmin∣∣Af(w)−yδ∣∣2+λTV(F(w))
T V ( f ( w ) ) = ∑ i , j TV(f(w))=\sum_{i,j} TV(f(w))=i,j∑
p ( w ∣ l , σ 2 ) = N ( w ∣ 0 , ∑ ( l , σ 2 ) ) p(w|\mathcal{l}, \sigma^2)=\mathcal{N}(w|0,\sum(l, \sigma^2)) p(w∣l,σ2)=N(w∣0,∑(l,σ2))
∑ ( l , σ 2 ) \sum(l,\sigma^2) ∑(l,σ2)
边栏推荐
- Babbitt | metauniverse daily must read: fraud of 200million in half a year, the biggest "hidden worry" of digital people, and deepfake fraud detonated the Internet again
- STM32 interrupt priority management NVIC details
- 数组的理解与操作
- Explanation of coordinate conversion examples
- Preparing transaction:done Verifying transaction:failed RemoveError:‘requests‘ is a dependency of **
- Importerror: DLL load failed: the specified module could not be found.
- LeetCode高频题:图像交并比IoU计算方法和手撕代码
- HCIP(6)
- [LeetCode解题报告] 423. 从英文中重建数字
- Flink CEP - 复杂事件处理(Complex Event Processing)
猜你喜欢

【Day3】Rnn

Preparing transaction:done Verifying transaction:failed RemoveError:‘requests‘ is a dependency of **
![ERROR: Could not install packages due to an OSError: [ Errno 2] No such file or directory: ***](/img/81/6f9b7d554e6a47e614107c799229d2.png)
ERROR: Could not install packages due to an OSError: [ Errno 2] No such file or directory: ***
![[kali] about the solution of](/img/17/9f48b6fcdb14eea2a4b9b546f6d1bc.png)
[kali] about the solution of "file size mismatch" and "the image you are using is being synchronized" in Kali update

HCIP(7)

Ruffian Heng embedded bimonthly issue 58

模板与泛型编程之萃取-01-固定萃取技术

Importerror: DLL load failed: the specified module could not be found.
![[ CTF ] Reverse baby_ re](/img/d1/6e2fd3ec60710cf6e4a94ce38c48da.png)
[ CTF ] Reverse baby_ re

Summary of CTF reverse knowledge points
随机推荐
Preparing transaction:done Verifying transaction:failed RemoveError:‘requests‘ is a dependency of **
Experiment on interconnection VLAN of multi port and single arm router
hcip实验作业(5)
Let's customize the reflection system
Translation and interpretation of the paper: learning logic rules for reasoning on knowledge graphs [rnnlogic]
js 地图两点距离计算
Software testing interview question: what is the software quality assurance system? What are the national standards related to quality assurance management? What is their number and full name?
CTF逆向(Reverse)知识点总结
Tupu software builds a source network load storage system to build a circular economy version 2.0
IO异常处理
[原创]移远RM500U-CN模组驱动移植
2020/7/13 每日一题(构造)
Templates are used in generic programming - Extraction Technology - to obtain element type examples through container types
【C语言刷LeetCode】676. 实现一个魔法字典(M)
文件的使用详解
模板与泛型编程之萃取-01-固定萃取技术
【C语言刷LeetCode】1432. 改变一个整数能得到的最大差值(M)
Solution of eigenvalue and eigenvector
HCIP(4)
如何利用华为ensp实现internet接入?