Differentiable architecture search for convolutional and recurrent networks

Overview

Differentiable Architecture Search

Code accompanying the paper

DARTS: Differentiable Architecture Search
Hanxiao Liu, Karen Simonyan, Yiming Yang.
arXiv:1806.09055.

darts

The algorithm is based on continuous relaxation and gradient descent in the architecture space. It is able to efficiently design high-performance convolutional architectures for image classification (on CIFAR-10 and ImageNet) and recurrent architectures for language modeling (on Penn Treebank and WikiText-2). Only a single GPU is required.

Requirements

Python >= 3.5.5, PyTorch == 0.3.1, torchvision == 0.2.0

NOTE: PyTorch 0.4 is not supported at this moment and would lead to OOM.

Datasets

Instructions for acquiring PTB and WT2 can be found here. While CIFAR-10 can be automatically downloaded by torchvision, ImageNet needs to be manually downloaded (preferably to a SSD) following the instructions here.

Pretrained models

The easist way to get started is to evaluate our pretrained DARTS models.

CIFAR-10 (cifar10_model.pt)

cd cnn && python test.py --auxiliary --model_path cifar10_model.pt
  • Expected result: 2.63% test error rate with 3.3M model params.

PTB (ptb_model.pt)

cd rnn && python test.py --model_path ptb_model.pt
  • Expected result: 55.68 test perplexity with 23M model params.

ImageNet (imagenet_model.pt)

cd cnn && python test_imagenet.py --auxiliary --model_path imagenet_model.pt
  • Expected result: 26.7% top-1 error and 8.7% top-5 error with 4.7M model params.

Architecture search (using small proxy models)

To carry out architecture search using 2nd-order approximation, run

cd cnn && python train_search.py --unrolled     # for conv cells on CIFAR-10
cd rnn && python train_search.py --unrolled     # for recurrent cells on PTB

Note the validation performance in this step does not indicate the final performance of the architecture. One must train the obtained genotype/architecture from scratch using full-sized models, as described in the next section.

Also be aware that different runs would end up with different local minimum. To get the best result, it is crucial to repeat the search process with different seeds and select the best cell(s) based on validation performance (obtained by training the derived cell from scratch for a small number of epochs). Please refer to fig. 3 and sect. 3.2 in our arXiv paper.

progress_convolutional_normal progress_convolutional_reduce progress_recurrent

Figure: Snapshots of the most likely normal conv, reduction conv, and recurrent cells over time.

Architecture evaluation (using full-sized models)

To evaluate our best cells by training from scratch, run

cd cnn && python train.py --auxiliary --cutout            # CIFAR-10
cd rnn && python train.py                                 # PTB
cd rnn && python train.py --data ../data/wikitext-2 \     # WT2
            --dropouth 0.15 --emsize 700 --nhidlast 700 --nhid 700 --wdecay 5e-7
cd cnn && python train_imagenet.py --auxiliary            # ImageNet

Customized architectures are supported through the --arch flag once specified in genotypes.py.

The CIFAR-10 result at the end of training is subject to variance due to the non-determinism of cuDNN back-prop kernels. It would be misleading to report the result of only a single run. By training our best cell from scratch, one should expect the average test error of 10 independent runs to fall in the range of 2.76 +/- 0.09% with high probability.

cifar10 ptb ptb

Figure: Expected learning curves on CIFAR-10 (4 runs), ImageNet and PTB.

Visualization

Package graphviz is required to visualize the learned cells

python visualize.py DARTS

where DARTS can be replaced by any customized architectures in genotypes.py.

Citation

If you use any part of this code in your research, please cite our paper:

@article{liu2018darts,
  title={DARTS: Differentiable Architecture Search},
  author={Liu, Hanxiao and Simonyan, Karen and Yang, Yiming},
  journal={arXiv preprint arXiv:1806.09055},
  year={2018}
}
Owner
Hanxiao Liu
Research Scientist @ Google Brain
Hanxiao Liu
This repository is related to an Arabic tutorial, within the tutorial we discuss the common data structure and algorithms and their worst and best case for each, then implement the code using Python.

Data Structure and Algorithms with Python This repository is related to the Arabic tutorial here, within the tutorial we discuss the common data struc

Mohamed Ayman 33 Dec 02, 2022
'Solving the sampling problem of the Sycamore quantum supremacy circuits

solve_sycamore This repo contains data, contraction code, and contraction order for the paper ''Solving the sampling problem of the Sycamore quantum s

Feng Pan 29 Nov 28, 2022
git《Joint Entity and Relation Extraction with Set Prediction Networks》(2020) GitHub:

Joint Entity and Relation Extraction with Set Prediction Networks Source code for Joint Entity and Relation Extraction with Set Prediction Networks. W

130 Dec 13, 2022
Hypercomplex Neural Networks with PyTorch

HyperNets Hypercomplex Neural Networks with PyTorch: this repository would be a container for hypercomplex neural network modules to facilitate resear

Eleonora Grassucci 21 Dec 27, 2022
Colab notebook for openai/glide-text2im.

GLIDE text2im on Colab This repository provides a Colab notebook to produce images conditioned on text prompts with GLIDE [1]. Usage Run text2im.ipynb

Wok 19 Oct 19, 2022
A small tool to joint picture including gif

README 做设计的时候遇到拼接长图的情况,但是发现没有什么好用的能拼接gif的工具。 于是自己写了个gif拼接小工具。 可以自动拼接gif、png和jpg等常见格式。 效果 从上至下 从下至上 从左至右 从右至左 使用 克隆仓库 git clone https://github.com/Dels

3 Dec 15, 2021
PyElecCL - Electron Monte Carlo Second Checks

PyElecCL Python program to perform second checks for electron Monte Carlo radiat

Reese Haywood 3 Feb 22, 2022
Simple Pixelbot for Diablo 2 Resurrected written in python and opencv.

Simple Pixelbot for Diablo 2 Resurrected written in python and opencv. Obviously only use it in offline mode as it is against the TOS of Blizzard to use it in online mode!

468 Jan 03, 2023
Scikit-event-correlation - Event Correlation and Forecasting over High Dimensional Streaming Sensor Data algorithms

scikit-event-correlation Event Correlation and Changing Detection Algorithm Theo

Intellia ICT 5 Oct 30, 2022
Syed Waqas Zamir 906 Dec 30, 2022
Code for "AutoMTL: A Programming Framework for Automated Multi-Task Learning"

AutoMTL: A Programming Framework for Automated Multi-Task Learning This is the website for our paper "AutoMTL: A Programming Framework for Automated M

Ivy Zhang 40 Dec 04, 2022
This program presents convolutional kernel density estimation, a method used to detect intercritical epilpetic spikes (IEDs)

Description This program presents convolutional kernel density estimation, a method used to detect intercritical epilpetic spikes (IEDs) in [Gardy et

Ludovic Gardy 0 Feb 09, 2022
Lite-HRNet: A Lightweight High-Resolution Network

LiteHRNet Benchmark 🔥 🔥 Based on MMsegmentation 🔥 🔥 Cityscapes FCN resize concat config mIoU last mAcc last eval last mIoU best mAcc best eval bes

16 Dec 12, 2022
Text Generation by Learning from Demonstrations

Text Generation by Learning from Demonstrations The README was last updated on March 7, 2021. The repo is based on fairseq (v0.9.?). Paper arXiv Prere

38 Oct 21, 2022
MlTr: Multi-label Classification with Transformer

MlTr: Multi-label Classification with Transformer This is official implement of "MlTr: Multi-label Classification with Transformer". Abstract The task

程星 38 Nov 08, 2022
The code for our paper CrossFormer: A Versatile Vision Transformer Based on Cross-scale Attention.

CrossFormer This repository is the code for our paper CrossFormer: A Versatile Vision Transformer Based on Cross-scale Attention. Introduction Existin

cheerss 238 Jan 06, 2023
Uses Open AI Gym environment to create autonomous cryptocurrency bot to trade cryptocurrencies.

Crypto_Bot Uses Open AI Gym environment to create autonomous cryptocurrency bot to trade cryptocurrencies. Steps to get started using the bot: Sign up

21 Oct 03, 2022
A PyTorch implementation of unsupervised SimCSE

A PyTorch implementation of unsupervised SimCSE

99 Dec 23, 2022
CLIPort: What and Where Pathways for Robotic Manipulation

CLIPort CLIPort: What and Where Pathways for Robotic Manipulation Mohit Shridhar, Lucas Manuelli, Dieter Fox CoRL 2021 CLIPort is an end-to-end imitat

246 Dec 11, 2022