RAFT-Stereo: Multilevel Recurrent Field Transforms for Stereo Matching

Overview

RAFT-Stereo: Multilevel Recurrent Field Transforms for Stereo Matching

This repository contains the source code for our paper:

RAFT-Stereo: Multilevel Recurrent Field Transforms for Stereo Matching
Lahav Lipson, Zachary Teed and Jia Deng

@article{lipson2021raft,
  title={{RAFT-Stereo: Multilevel Recurrent Field Transforms for Stereo Matching}},
  author={Lipson, Lahav and Teed, Zachary and Deng, Jia},
  journal={arXiv preprint arXiv:2109.07547},
  year={2021}
}

Requirements

The code has been tested with PyTorch 1.7 and Cuda 10.2.

conda env create -f environment.yaml
conda activate raftstereo

Required Data

To evaluate/train RAFT-stereo, you will need to download the required datasets.

To download the ETH3D and Middlebury test datasets for the demos, run

chmod ug+x download_datasets.sh && ./download_datasets.sh

By default stereo_datasets.py will search for the datasets in these locations. You can create symbolic links to wherever the datasets were downloaded in the datasets folder

├── datasets
    ├── FlyingThings3D
        ├── frames_cleanpass
        ├── frames_finalpass
        ├── disparity
    ├── Monkaa
        ├── frames_cleanpass
        ├── frames_finalpass
        ├── disparity
    ├── Driving
        ├── frames_cleanpass
        ├── frames_finalpass
        ├── disparity
    ├── KITTI
        ├── testing
        ├── training
        ├── devkit
    ├── Middlebury
        ├── MiddEval3
    ├── ETH3D
        ├── lakeside_1l
        ├── ...
        ├── tunnel_3s

Demos

Pretrained models can be downloaded by running

chmod ug+x download_models.sh && ./download_models.sh

or downloaded from google drive

You can demo a trained model on pairs of images. To predict stereo for Middlebury, run

python demo.py --restore_ckpt models/raftstereo-sceneflow.pth

Or for ETH3D:

python demo.py --restore_ckpt models/raftstereo-eth3d.pth -l=datasets/ETH3D/*/im0.png -r=datasets/ETH3D/*/im1.png

Using our fastest model:

python demo.py --restore_ckpt models/raftstereo-realtime.pth  --shared_backbone --n_downsample 3 --n_gru_layers 2 --slow_fast_gru 

To save the disparity values as .npy files, run any of the demos with the --save_numpy flag.

Converting Disparity to Depth

If the camera focal length and camera baseline are known, disparity predictions can be converted to depth values using

Note that the units of the focal length are pixels not millimeters.

Evaluation

To evaluate a trained model on a validation set (e.g. Middlebury), run

python evaluate_stereo.py --restore_ckpt models/raftstereo-middlebury.pth --dataset middlebury_H

Training

Our model is trained on two RTX-6000 GPUs using the following command. Training logs will be written to runs/ which can be visualized using tensorboard.

python train_stereo.py --batch_size 8 --train_iters 22 --valid_iters 32 --spatial_scale -0.2 0.4 --saturation_range 0 1.4 --n_downsample 2 --num_steps 200000 --mixed_precision

To train using significantly less memory, change --n_downsample 2 to --n_downsample 3. This will slightly reduce accuracy.

(Optional) Faster Implementation

We provide a faster CUDA implementation of the correlation volume which works with mixed precision feature maps.

cd sampler && python setup.py install && cd ..

Running demo.py, train_stereo.py or evaluate.py with --corr_implementation reg_cuda together with --mixed_precision will speed up the model without impacting performance.

To significantly decrease memory consumption on high resolution images, use --corr_implementation alt. This implementation is slower than the default, however.

Owner
Princeton Vision & Learning Lab
Princeton Vision & Learning Lab
Array Camera Ptychography

Array Camera Ptychography This repository provides the code for the following papers: Schulz, Timothy J., David J. Brady, and Chengyu Wang. "Photon-li

Brady lab in Optical Sciences 1 Nov 15, 2021
Campsite Reservation Finder

yellowstone-camping UPDATE: yellowstone-camping is being expanded and renamed to camply. The updated tool now interfaces with the Recreation.gov API a

Justin Flannery 233 Jan 08, 2023
An implementation of paper `Real-time Convolutional Neural Networks for Emotion and Gender Classification` with PaddlePaddle.

简介 通过PaddlePaddle框架复现了论文 Real-time Convolutional Neural Networks for Emotion and Gender Classification 中提出的两个模型,分别是SimpleCNN和MiniXception。利用 imdb_crop

8 Mar 11, 2022
Physical Anomalous Trajectory or Motion (PHANTOM) Dataset

Physical Anomalous Trajectory or Motion (PHANTOM) Dataset Description This dataset contains the six different classes as described in our paper[]. The

0 Dec 16, 2021
MHFormer: Multi-Hypothesis Transformer for 3D Human Pose Estimation

MHFormer: Multi-Hypothesis Transformer for 3D Human Pose Estimation This repo is the official implementation of "MHFormer: Multi-Hypothesis Transforme

Vegetabird 281 Jan 07, 2023
Source Code for ICSE 2022 Paper - ``Can We Achieve Fairness Using Semi-Supervised Learning?''

Fair-SSL Source Code for ICSE 2022 Paper - Can We Achieve Fairness Using Semi-Supervised Learning? Ethical bias in machine learning models has become

1 Dec 18, 2021
PyTorch implementation for our AAAI 2022 Paper "Graph-wise Common Latent Factor Extraction for Unsupervised Graph Representation Learning"

deepGCFX PyTorch implementation for our AAAI 2022 Paper "Graph-wise Common Latent Factor Extraction for Unsupervised Graph Representation Learning" Pr

Thilini Cooray 4 Aug 11, 2022
Self-Regulated Learning for Egocentric Video Activity Anticipation

Self-Regulated Learning for Egocentric Video Activity Anticipation Introduction This is a Pytorch implementation of the model described in our paper:

qzhb 13 Sep 23, 2022
Strongly local p-norm-cut algorithms for semi-supervised learning and local graph clustering

Strongly local p-norm-cut algorithms for semi-supervised learning and local graph clustering

Meng Liu 2 Jul 19, 2022
Make a surveillance camera from your raspberry pi!

rpi-surveillance Make a surveillance camera from your Raspberry Pi 4! The surveillance is built as following: the camera records 10 seconds video and

Vladyslav 62 Feb 03, 2022
Self-Supervised Learning with Data Augmentations Provably Isolates Content from Style

Self-Supervised Learning with Data Augmentations Provably Isolates Content from Style [NeurIPS 2021] Official code to reproduce the results and data p

Yash Sharma 27 Sep 19, 2022
Image segmentation with private İstanbul Dataset

Image Segmentation This repo was created for academic research and test result. Repo will update after academic article online. This repo contains wei

İrem KÖMÜRCÜ 9 Dec 11, 2022
Causal Influence Detection for Improving Efficiency in Reinforcement Learning

Causal Influence Detection for Improving Efficiency in Reinforcement Learning This repository contains the code release for the paper "Causal Influenc

Autonomous Learning Group 21 Nov 29, 2022
Deep Learning Pipelines for Apache Spark

Deep Learning Pipelines for Apache Spark The repo only contains HorovodRunner code for local CI and API docs. To use HorovodRunner for distributed tra

Databricks 2k Jan 08, 2023
Python implementation of Lightning-rod Agent, the Stack4Things board-side probe

Iotronic Lightning-rod Agent Python implementation of Lightning-rod Agent, the Stack4Things board-side probe. Free software: Apache 2.0 license Websit

2 May 19, 2022
Official PyTorch repo for JoJoGAN: One Shot Face Stylization

JoJoGAN: One Shot Face Stylization This is the PyTorch implementation of JoJoGAN: One Shot Face Stylization. Abstract: While there have been recent ad

1.3k Dec 29, 2022
Official Pytorch implementation for video neural representation (NeRV)

NeRV: Neural Representations for Videos (NeurIPS 2021) Project Page | Paper | UVG Data Hao Chen, Bo He, Hanyu Wang, Yixuan Ren, Ser-Nam Lim, Abhinav S

hao 214 Dec 28, 2022
Deep learning based hand gesture recognition using LSTM and MediaPipie.

Hand Gesture Recognition Deep learning based hand gesture recognition using LSTM and MediaPipie. Demo video using PingPong Robot Files Pretrained mode

Brad 24 Nov 11, 2022
Pytorch implementation of “Recursive Non-Autoregressive Graph-to-Graph Transformer for Dependency Parsing with Iterative Refinement”

Graph-to-Graph Transformers Self-attention models, such as Transformer, have been hugely successful in a wide range of natural language processing (NL

Idiap Research Institute 40 Aug 14, 2022
Code and real data for the paper "Counterfactual Temporal Point Processes", available at arXiv.

counterfactual-tpp This is a repository containing code and real data for the paper Counterfactual Temporal Point Processes. Pre-requisites This code

Networks Learning 11 Dec 09, 2022