Official Pytorch implementation of Online Continual Learning on Class Incremental Blurry Task Configuration with Anytime Inference (ICLR 2022)

Related tags

Deep Learningi-Blurry
Overview

The Official Implementation of CLIB (Continual Learning for i-Blurry)

Online Continual Learning on Class Incremental Blurry Task Configuration with Anytime Inference
Hyunseo Koh*, Dahyun Kim*, Jung-Woo Ha, Jonghyun Choi
ICLR 2022 [Paper]
(* indicates equal contribution)

Overview

Abstract

Despite rapid advances in continual learning, a large body of research is devoted to improving performance in the existing setups. While a handful of work do propose new continual learning setups, they still lack practicality in certain aspects. For better practicality, we first propose a novel continual learning setup that is online, task-free, class-incremental, of blurry task boundaries and subject to inference queries at any moment. We additionally propose a new metric to better measure the performance of the continual learning methods subject to inference queries at any moment. To address the challenging setup and evaluation protocol, we propose an effective method that employs a new memory management scheme and novel learning techniques. Our empirical validation demonstrates that the proposed method outperforms prior arts by large margins.

Results

Results of CL methods on various datasets, for online continual learning on i-Blurry-50-10 split, measured by metric. For more details, please refer to our paper.

Methods CIFAR10 CIFAR100 TinyImageNet ImageNet
EWC++ 57.34±2.10 35.35±1.96 22.26±1.15 24.81
BiC 58.38±0.54 33.51±3.04 22.80±0.94 27.41
ER-MIR 57.28±2.43 35.35±1.41 22.10±1.14 20.48
GDumb 53.20±1.93 32.84±0.45 18.17±0.19 14.41
RM 23.00±1.43 8.63±0.19 5.74±0.30 6.22
Baseline-ER 57.46±2.25 35.61±2.08 22.45±1.15 25.16
CLIB 70.26±1.28 46.67±0.79 23.87±0.68 28.16

Getting Started

To set up the environment for running the code, you can either use the docker container, or manually install the requirements in a virtual environment.

Using Docker Container (Recommended)

We provide the Docker image khs8157/iblurry on Docker Hub for reproducing the results. To download the docker image, run the following command:

docker pull khs8157/iblurry:latest

After pulling the image, you may run the container via following command:

docker run --gpus all -it --shm-size=64gb -v /PATH/TO/CODE:/PATH/TO/CODE --name=CONTAINER_NAME khs8157/iblurry:latest bash

Replace the arguments written in italic with your own arguments.

Requirements

  • Python3
  • Pytorch (>=1.9)
  • torchvision (>=0.10)
  • numpy
  • pillow~=6.2.1
  • torch_optimizer
  • randaugment
  • easydict
  • pandas~=1.1.3

If not using Docker container, install the requirements using the following command

pip install -r requirements.txt

Running Experiments

Downloading the Datasets

CIFAR10, CIFAR100, and TinyImageNet can be downloaded by running the corresponding scripts in the dataset/ directory. ImageNet dataset can be downloaded from Kaggle.

Experiments Using Shell Script

Experiments for the implemented methods can be run by executing the shell scripts provided in scripts/ directory. For example, you may run CL experiments using CLIB method by

bash scripts/clib.sh

You may change various arguments for different experiments.

  • NOTE: Short description of the experiment. Experiment result and log will be saved at results/DATASET/NOTE.
    • WARNING: logs/results with the same dataset and note will be overwritten!
  • MODE: CL method to be applied. Methods implemented in this version are: [clib, er, ewc++, bic, mir, gdumb, rm]
  • DATASET: Dataset to use in experiment. Supported datasets are: [cifar10, cifar100, tinyimagenet, imagenet]
  • N_TASKS: Number of tasks. Note that corresponding json file should exist in collections/ directory.
  • N: Percentage of disjoint classes in i-blurry split. N=100 for full disjoint, N=0 for full blurry. Note that corresponding json file should exist in collections/ directory.
  • M: Blurry ratio of blurry classes in i-blurry split. Note that corresponding json file should exist in collections/ directory.
  • GPU_TRANSFORM: Perform AutoAug on GPU, for faster running.
  • USE_AMP: Use automatic mixed precision (amp), for faster running and reducing memory cost.
  • MEM_SIZE: Maximum number of samples in the episodic memory.
  • ONLINE_ITER: Number of model updates per sample.
  • EVAL_PERIOD: Period of evaluation queries, for calculating .

Citation

If you used our code or i-blurry setup, please cite our paper.

@inproceedings{koh2022online,
  title={Online Continual Learning on Class Incremental Blurry Task Configuration with Anytime Inference},
  author={Koh, Hyunseo and Kim, Dahyun and Ha, Jung-Woo and Choi, Jonghyun},
  booktitle={ICLR},
  year={2022}
}

License

Copyright (C) 2022-present NAVER Corp.

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program.  If not, see <https://www.gnu.org/licenses/>.
Owner
NAVER AI
Official account of NAVER CLOVA AI Lab, Korea No.1 Industrial AI Research Group
NAVER AI
Pytorch Lightning Implementation of SC-Depth Methods.

SC_Depth_pl: This is a pytorch lightning implementation of SC-Depth (V1, V2) for self-supervised learning of monocular depth from video. In the V1 (IJ

JiaWang Bian 216 Dec 30, 2022
Self-Learned Video Rain Streak Removal: When Cyclic Consistency Meets Temporal Correspondence

In this paper, we address the problem of rain streaks removal in video by developing a self-learned rain streak removal method, which does not require any clean groundtruth images in the training pro

Yang Wenhan 44 Dec 06, 2022
Ladder Variational Autoencoders (LVAE) in PyTorch

Ladder Variational Autoencoders (LVAE) PyTorch implementation of Ladder Variational Autoencoders (LVAE) [1]: where the variational distributions q at

Andrea Dittadi 63 Dec 22, 2022
2021 National Underwater Robotics Vision Optics

2021-National-Underwater-Robotics-Vision-Optics 2021年全国水下机器人算法大赛-光学赛道-B榜精度第18名 (Kilian_Di的团队:A榜[email pro

Di Chang 9 Nov 04, 2022
Keras-1D-ACGAN-Data-Augmentation

Keras-1D-ACGAN-Data-Augmentation What is the ACGAN(Auxiliary Classifier GANs) ? Related Paper : [Abstract : Synthesizing high resolution photorealisti

Jae-Hoon Shim 7 Dec 23, 2022
Tensorflow 2 Object Detection API kurulumu, GPU desteği, custom model hazırlama

Tensorflow 2 Object Detection API Bu tutorial, TensorFlow 2.x'in kararlı sürümü olan TensorFlow 2.3'ye yöneliktir. Bu, görüntülerde / videoda nesne a

46 Nov 20, 2022
FCN (Fully Convolutional Network) is deep fully convolutional neural network architecture for semantic pixel-wise segmentation

FCN_via_Keras FCN FCN (Fully Convolutional Network) is deep fully convolutional neural network architecture for semantic pixel-wise segmentation. This

Kento Watanabe 48 Aug 30, 2022
Kernel Point Convolutions

Created by Hugues THOMAS Introduction Update 27/04/2020: New PyTorch implementation available. With SemanticKitti, and Windows supported. This reposit

Hugues THOMAS 584 Jan 07, 2023
Code associated with the paper "Deep Optics for Single-shot High-dynamic-range Imaging"

Deep Optics for Single-shot High-dynamic-range Imaging Code associated with the paper "Deep Optics for Single-shot High-dynamic-range Imaging" CVPR, 2

Stanford Computational Imaging Lab 40 Dec 12, 2022
The Deep Learning with Julia book, using Flux.jl.

Deep Learning with Julia DL with Julia is a book about how to do various deep learning tasks using the Julia programming language and specifically the

Logan Kilpatrick 67 Dec 25, 2022
Rethinking of Pedestrian Attribute Recognition: A Reliable Evaluation under Zero-Shot Pedestrian Identity Setting

Pytorch Pedestrian Attribute Recognition: A strong PyTorch baseline of pedestrian attribute recognition and multi-label classification.

Jian 79 Dec 18, 2022
A MatConvNet-based implementation of the Fully-Convolutional Networks for image segmentation

MatConvNet implementation of the FCN models for semantic segmentation This package contains an implementation of the FCN models (training and evaluati

VLFeat.org 175 Feb 18, 2022
Self-Supervised Learning of Event-based Optical Flow with Spiking Neural Networks

Self-Supervised Learning of Event-based Optical Flow with Spiking Neural Networks Work accepted at NeurIPS'21 [paper, video]. If you use this code in

TU Delft 43 Dec 07, 2022
Style transfer between images was performed using the VGG19 model

Style transfer between images was performed using the VGG19 model. The necessary codes, libraries and all other information of this project are available below

Onur yılmaz 2 May 09, 2022
Official implementation of the paper Do pedestrians pay attention? Eye contact detection for autonomous driving

Do pedestrians pay attention? Eye contact detection for autonomous driving Official implementation of the paper Do pedestrians pay attention? Eye cont

VITA lab at EPFL 26 Nov 02, 2022
an implementation of softmax splatting for differentiable forward warping using PyTorch

softmax-splatting This is a reference implementation of the softmax splatting operator, which has been proposed in Softmax Splatting for Video Frame I

Simon Niklaus 338 Dec 28, 2022
NAVER BoostCamp Final Project

CV 14조 final project Super Resolution and Deblur module Inference code & Pretrained weight Repo SwinIR Deblur 실행 방법 streamlit run WebServer/Server_SRD

JiSeong Kim 5 Sep 06, 2022
Implementation of Bagging and AdaBoost Algorithm

Bagging-and-AdaBoost Implementation of Bagging and AdaBoost Algorithm Dataset Red Wine Quality Data Sets For simplicity, we will have 2 classes of win

Zechen Ma 1 Nov 01, 2021
reimpliment of DFANet: Deep Feature Aggregation for Real-Time Semantic Segmentation

DFANet This repo is an unofficial pytorch implementation of DFANet:Deep Feature Aggregation for Real-Time Semantic Segmentation log 2019.4.16 After 48

shen hui xiang 248 Oct 21, 2022
Learning Energy-Based Models by Diffusion Recovery Likelihood

Learning Energy-Based Models by Diffusion Recovery Likelihood Ruiqi Gao, Yang Song, Ben Poole, Ying Nian Wu, Diederik P. Kingma Paper: https://arxiv.o

Ruiqi Gao 41 Nov 22, 2022