PyTorch Implementation of Meta-StyleSpeech : Multi-Speaker Adaptive Text-to-Speech Generation

Overview

StyleSpeech - PyTorch Implementation

PyTorch Implementation of Meta-StyleSpeech : Multi-Speaker Adaptive Text-to-Speech Generation.

Status (2021.06.09)

  • StyleSpeech
  • Meta-StyleSpeech

Quickstart

Dependencies

You can install the Python dependencies with

pip3 install -r requirements.txt

Inference

You have to download the pretrained models and put them in output/ckpt/LibriTTS/.

For English single-speaker TTS, run

python3 synthesize.py --text "YOUR_DESIRED_TEXT" --ref_audio path/to/reference_audio.wav --speaker_id <SPEAKER_ID> --restore_step 100000 --mode single -p config/LibriTTS/preprocess.yaml -m config/LibriTTS/model.yaml -t config/LibriTTS/train.yaml

The generated utterances will be put in output/result/. Your synthesized speech will have ref_audio's style spoken by speaker_id speaker. Note that the controllability of speakers is not a vital interest of StyleSpeech.

Batch Inference

Batch inference is also supported, try

python3 synthesize.py --source preprocessed_data/LibriTTS/val.txt --restore_step 100000 --mode batch -p config/LibriTTS/preprocess.yaml -m config/LibriTTS/model.yaml -t config/LibriTTS/train.yaml

to synthesize all utterances in preprocessed_data/LibriTTS/val.txt. This can be viewed as a reconstruction of validation datasets referring to themselves for the reference style.

Controllability

The pitch/volume/speaking rate of the synthesized utterances can be controlled by specifying the desired pitch/energy/duration ratios. For example, one can increase the speaking rate by 20 % and decrease the volume by 20 % by

python3 synthesize.py --text "YOUR_DESIRED_TEXT" --restore_step 100000 --mode single -p config/LibriTTS/preprocess.yaml -m config/LibriTTS/model.yaml -t config/LibriTTS/train.yaml --duration_control 0.8 --energy_control 0.8

Note that the controllability is originated from FastSpeech2 and not a vital interest of StyleSpeech.

Training

Datasets

The supported datasets are

  • LibriTTS: a multi-speaker English dataset containing 585 hours of speech by 2456 speakers.
  • (will be added more)

Preprocessing

First, run

python3 prepare_align.py config/LibriTTS/preprocess.yaml

for some preparations.

In this implementation, Montreal Forced Aligner (MFA) is used to obtain the alignments between the utterances and the phoneme sequences.

Download the official MFA package and run

./montreal-forced-aligner/bin/mfa_align raw_data/LibriTTS/ lexicon/librispeech-lexicon.txt english preprocessed_data/LibriTTS

or

./montreal-forced-aligner/bin/mfa_train_and_align raw_data/LibriTTS/ lexicon/librispeech-lexicon.txt preprocessed_data/LibriTTS

to align the corpus and then run the preprocessing script.

python3 preprocess.py config/LibriTTS/preprocess.yaml

Training

Train your model with

python3 train.py -p config/LibriTTS/preprocess.yaml -m config/LibriTTS/model.yaml -t config/LibriTTS/train.yaml

TensorBoard

Use

tensorboard --logdir output/log/LibriTTS

to serve TensorBoard on your localhost. The loss curves, synthesized mel-spectrograms, and audios are shown.

Implementation Issues

  1. Use 22050Hz sampling rate instead of 16kHz.
  2. Add one fully connected layer at the beginning of Mel-Style Encoder to upsample input mel-spectrogram from 80 to 128.
  3. The Paper doesn't mention speaker embedding for the Generator, but I add it as a normal multi-speaker TTS. And the style_prototype of Meta-StyleSpeech can be seen as a speaker embedding space.
  4. Use HiFi-GAN instead of MelGAN for vocoding.

Citation

@misc{lee2021stylespeech,
  author = {Lee, Keon},
  title = {StyleSpeech},
  year = {2021},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {\url{https://github.com/keonlee9420/StyleSpeech}}
}

References

Comments
  • What is the perfermance compared with Adaspeech

    What is the perfermance compared with Adaspeech

    Thank you for your great work and share. Your work looks differ form adaspeech and NAUTILUS. You use GANs which i did not see in other papers regarding adaptative TTS. Have you compare this method with adaspeech1/2? how about the mos and similarity?

    opened by Liujingxiu23 10
  • The size of tensor a (xx) must match the size of tensor b (yy)

    The size of tensor a (xx) must match the size of tensor b (yy)

    Hi I try to run your project. I use cuda 10.1, all requirements are installed (with torch 1.8.1), all models are preloaded. But i have an error: python3 synthesize.py --text "Hello world" --restore_step 200000 --mode single -p config/LibriTTS/preprocess.yaml -m config/LibriTTS/model.yaml -t config/LibriTTS/train.yaml --duration_control 0.8 --energy_control 0.8 --ref_audio ref.wav

    Removing weight norm...
    Raw Text Sequence: Hello world
    Phoneme Sequence: {HH AH0 L OW1 W ER1 L D}
    Traceback (most recent call last):
      File "synthesize.py", line 268, in <module>
        synthesize(model, args.restore_step, configs, vocoder, batchs, control_values)
      File "synthesize.py", line 152, in synthesize
        d_control=duration_control
      File "/usr/local/lib/python3.6/dist-packages/torch/nn/modules/module.py", line 889, in _call_impl
        result = self.forward(input, *kwargs)
      File "/usr/local/work/model/StyleSpeech.py", line 144, in forward
        d_control,
      File "/usr/local/work/model/StyleSpeech.py", line 91, in G
        output, mel_masks = self.mel_decoder(output, style_vector, mel_masks)
      File "/usr/local/lib/python3.6/dist-packages/torch/nn/modules/module.py", line 889, in _call_impl
        result = self.forward(input, kwargs)
      File "/usr/local/work/model/modules.py", line 307, in forward
        enc_seq = self.mel_prenet(enc_seq, mask)
      File "/usr/local/lib/python3.6/dist-packages/torch/nn/modules/module.py", line 889, in _call_impl
        result = self.forward(input, kwargs)
      File "/usr/local/work/model/modules.py", line 259, in forward
        x = x.masked_fill(mask.unsqueeze(-1), 0)
    RuntimeError: The size of tensor a (44) must match the size of tensor b (47) at non-singleton dimension 1
    
    opened by DiDimus 9
  • VCTK datasets

    VCTK datasets

    Hi, I note your paper evaluates the models' performance on VCTK datasets, but I not see the process file about VCTK. Hence, could you share the files, thank you very much.

    opened by XXXHUA 7
  • training error

    training error

    Thanks for your sharing!

    I tried both naive and main branches using your checkpoints, it seems the former one is much better. So I trained AISHELL3 models with small changes on your code and the synthesized waves are good for me.

    However when I add my own data into AISHELL3, some error occurred: Training: 0%| | 3105/900000 [32:05<154:31:49, 1.61it/s] Epoch 2: 69%|██████████████████████▏ | 318/459 [05:02<02:14, 1.05it/s] File "train.py", line 211, in main(args, configs) File "train.py", line 87, in main output = model(*(batch[2:])) File "/opt/conda/lib/python3.8/site-packages/torch/nn/modules/module.py", line 889, in _call_impl result = self.forward(*input, **kwargs) File "/opt/conda/lib/python3.8/site-packages/torch/nn/parallel/data_parallel.py", line 165, in forward return self.module(*inputs[0], **kwargs[0]) File "/opt/conda/lib/python3.8/site-packages/torch/nn/modules/module.py", line 889, in _call_impl result = self.forward(*input, **kwargs) File "/workspace/StyleSpeech-naive/model/StyleSpeech.py", line 83, in forward ) = self.variance_adaptor( File "/opt/conda/lib/python3.8/site-packages/torch/nn/modules/module.py", line 889, in _call_impl result = self.forward(*input, **kwargs) File "/workspace/StyleSpeech-naive/model/modules.py", line 404, in forward x = x + pitch_embedding RuntimeError: The size of tensor a (52) must match the size of tensor b (53) at non-singleton dimension 1

    I only replaced two speakers and preprocessed data the same as the in readme.

    Do you have any advice for this error ? Any suggestion is appreciated.

    opened by MingZJU 6
  • the synthesis result is bad when using pretrain model

    the synthesis result is bad when using pretrain model

    hello sir, thanks for your sharing.

    i meet a problem when i using pretrain model to synthsize demo file. the effect of synthesized wav is so bad.

    do you konw what problem happened?

    pretrain_model: output/ckpt/LibriTTS_meta_learner/200000.pth.tar ref_audio: ref_audio.zip demo_txt: {Promises are often like the butterfly, which disappear after beautiful hover. No matter the ending is perfect or not, you cannot disappear from my world.} demo_wav:demo.zip

    opened by mnfutao 4
  • Maybe style_prototype can instead of ref_mel?

    Maybe style_prototype can instead of ref_mel?

    hello @keonlee9420 , thanks for your contribution on StyleSpeech. When I read your paper and source code, I think that the style_prototype (which is an embedding matrix) maybe can instread of the ref_mel, because there is a CE-loss between style_prototype and style_vector, which can control this embedding matrix close to style. In short, we can give a speaker id to synthesize this speaker's wave. Is it right?

    opened by forwiat 3
  • architecture shows bad results

    architecture shows bad results

    Hi, i have completely repeated your steps for learning. During training, style speech loss fell down, but after learning began, meta style speech loss began to grow up. Can you help with training the model? I can describe my steps in more detail.

    opened by e0xextazy 2
  • UnboundLocalError: local variable 'pitch' referenced before assignment

    UnboundLocalError: local variable 'pitch' referenced before assignment

    Hi, when I run preprocessor.py, I have this problem: /preprocessor.py", line 92, in build_from_path if len(pitch) > 0: UnboundLocalError: local variable 'pitch' referenced before assignment When I try to add a global declaration to the function, it shows NameError: name 'pitch' is not defined How should this be resolved? I would be grateful if I could get your guidance soon.

    opened by Summerxu86 0
  • How can I improve the synthesized results?

    How can I improve the synthesized results?

    I have trained the model for 200k steps, and still, the synthesised results are extremely bad. loss_curve This is what my loss curve looks like. Can you help me with what can I do now to improve my synthesized audio results?

    opened by sanjeevani279 1
  • RuntimeError: Error(s) in loading state_dict for Stylespeech

    RuntimeError: Error(s) in loading state_dict for Stylespeech

    Hi @keonlee9420, I am getting the following error, while running the naive branch :

    Traceback (most recent call last):
      File "synthesize.py", line 242, in <module>
        model = get_model(args, configs, device, train=False)
      File "/home/azureuser/aditya_workspace/stylespeech_keonlee_naive/utils/model.py", line 21, in get_model
        model.load_state_dict(ckpt["model"], strict=True)
      File "/home/azureuser/aditya_workspace/keonlee/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1223, in load_state_dict
        raise RuntimeError('Error(s) in loading state_dict for {}:\n\t{}'.format(
    RuntimeError: Error(s) in loading state_dict for StyleSpeech:
    	Missing key(s) in state_dict: "D_t.mel_linear.0.fc_layer.fc_layer.linear.weight_orig", "D_t.mel_linear.0.fc_layer.fc_layer.linear.weight", "D_t.mel_linear.0.fc_layer.fc_layer.linear.weight_u", "D_t.mel_linear.0.fc_layer.fc_layer.linear.weight_orig", "D_t.mel_linear.0.fc_layer.fc_layer.linear.weight_u", "D_t.mel_linear.0.fc_layer.fc_layer.linear.weight_v", "D_t.mel_linear.1.fc_layer.fc_layer.linear.weight_orig", "D_t.mel_linear.1.fc_layer.fc_layer.linear.weight", "D_t.mel_linear.1.fc_layer.fc_layer.linear.weight_u", "D_t.mel_linear.1.fc_layer.fc_layer.linear.weight_orig", "D_t.mel_linear.1.fc_layer.fc_layer.linear.weight_u", "D_t.mel_linear.1.fc_layer.fc_layer.linear.weight_v", "D_t.discriminator_stack.0.fc_layer.fc_layer.linear.weight_orig", "D_t.discriminator_stack.0.fc_layer.fc_layer.linear.weight", "D_t.discriminator_stack.0.fc_layer.fc_layer.linear.weight_u", "D_t.discriminator_stack.0.fc_layer.fc_layer.linear.weight_orig", "D_t.discriminator_stack.0.fc_layer.fc_layer.linear.weight_u", "D_t.discriminator_stack.0.fc_layer.fc_layer.linear.weight_v", "D_t.discriminator_stack.1.fc_layer.fc_layer.linear.weight_orig", "D_t.discriminator_stack.1.fc_layer.fc_layer.linear.weight", "D_t.discriminator_stack.1.fc_layer.fc_layer.linear.weight_u", "D_t.discriminator_stack.1.fc_layer.fc_layer.linear.weight_orig", "D_t.discriminator_stack.1.fc_layer.fc_layer.linear.weight_u", "D_t.discriminator_stack.1.fc_layer.fc_layer.linear.weight_v", "D_t.discriminator_stack.2.fc_layer.fc_layer.linear.weight_orig", "D_t.discriminator_stack.2.fc_layer.fc_layer.linear.weight", "D_t.discriminator_stack.2.fc_layer.fc_layer.linear.weight_u", "D_t.discriminator_stack.2.fc_layer.fc_layer.linear.weight_orig", "D_t.discriminator_stack.2.fc_layer.fc_layer.linear.weight_u", "D_t.discriminator_stack.2.fc_layer.fc_layer.linear.weight_v", "D_t.final_linear.fc_layer.fc_layer.linear.weight_orig", "D_t.final_linear.fc_layer.fc_layer.linear.weight", "D_t.final_linear.fc_layer.fc_layer.linear.weight_u", "D_t.final_linear.fc_layer.fc_layer.linear.weight_orig", "D_t.final_linear.fc_layer.fc_layer.linear.weight_u", "D_t.final_linear.fc_layer.fc_layer.linear.weight_v", "D_s.fc_1.fc_layer.fc_layer.linear.weight_orig", "D_s.fc_1.fc_layer.fc_layer.linear.weight", "D_s.fc_1.fc_layer.fc_layer.linear.weight_u", "D_s.fc_1.fc_layer.fc_layer.linear.weight_orig", "D_s.fc_1.fc_layer.fc_layer.linear.weight_u", "D_s.fc_1.fc_layer.fc_layer.linear.weight_v", "D_s.spectral_stack.0.fc_layer.fc_layer.linear.weight_orig", "D_s.spectral_stack.0.fc_layer.fc_layer.linear.weight", "D_s.spectral_stack.0.fc_layer.fc_layer.linear.weight_u", "D_s.spectral_stack.0.fc_layer.fc_layer.linear.weight_orig", "D_s.spectral_stack.0.fc_layer.fc_layer.linear.weight_u", "D_s.spectral_stack.0.fc_layer.fc_layer.linear.weight_v", "D_s.spectral_stack.1.fc_layer.fc_layer.linear.weight_orig", "D_s.spectral_stack.1.fc_layer.fc_layer.linear.weight", "D_s.spectral_stack.1.fc_layer.fc_layer.linear.weight_u", "D_s.spectral_stack.1.fc_layer.fc_layer.linear.weight_orig", "D_s.spectral_stack.1.fc_layer.fc_layer.linear.weight_u", "D_s.spectral_stack.1.fc_layer.fc_layer.linear.weight_v", "D_s.temporal_stack.0.conv_layer.conv_layer.conv.weight_orig", "D_s.temporal_stack.0.conv_layer.conv_layer.conv.weight", "D_s.temporal_stack.0.conv_layer.conv_layer.conv.weight_u", "D_s.temporal_stack.0.conv_layer.conv_layer.conv.bias", "D_s.temporal_stack.0.conv_layer.conv_layer.conv.weight_orig", "D_s.temporal_stack.0.conv_layer.conv_layer.conv.weight_u", "D_s.temporal_stack.0.conv_layer.conv_layer.conv.weight_v", "D_s.temporal_stack.1.conv_layer.conv_layer.conv.weight_orig", "D_s.temporal_stack.1.conv_layer.conv_layer.conv.weight", "D_s.temporal_stack.1.conv_layer.conv_layer.conv.weight_u", "D_s.temporal_stack.1.conv_layer.conv_layer.conv.bias", "D_s.temporal_stack.1.conv_layer.conv_layer.conv.weight_orig", "D_s.temporal_stack.1.conv_layer.conv_layer.conv.weight_u", "D_s.temporal_stack.1.conv_layer.conv_layer.conv.weight_v", "D_s.slf_attn_stack.0.w_qs.linear.weight_orig", "D_s.slf_attn_stack.0.w_qs.linear.weight", "D_s.slf_attn_stack.0.w_qs.linear.weight_u", "D_s.slf_attn_stack.0.w_qs.linear.weight_orig", "D_s.slf_attn_stack.0.w_qs.linear.weight_u", "D_s.slf_attn_stack.0.w_qs.linear.weight_v", "D_s.slf_attn_stack.0.w_ks.linear.weight_orig", "D_s.slf_attn_stack.0.w_ks.linear.weight", "D_s.slf_attn_stack.0.w_ks.linear.weight_u", "D_s.slf_attn_stack.0.w_ks.linear.weight_orig", "D_s.slf_attn_stack.0.w_ks.linear.weight_u", "D_s.slf_attn_stack.0.w_ks.linear.weight_v", "D_s.slf_attn_stack.0.w_vs.linear.weight_orig", "D_s.slf_attn_stack.0.w_vs.linear.weight", "D_s.slf_attn_stack.0.w_vs.linear.weight_u", "D_s.slf_attn_stack.0.w_vs.linear.weight_orig", "D_s.slf_attn_stack.0.w_vs.linear.weight_u", "D_s.slf_attn_stack.0.w_vs.linear.weight_v", "D_s.slf_attn_stack.0.layer_norm.weight", "D_s.slf_attn_stack.0.layer_norm.bias", "D_s.slf_attn_stack.0.fc.linear.weight_orig", "D_s.slf_attn_stack.0.fc.linear.weight", "D_s.slf_attn_stack.0.fc.linear.weight_u", "D_s.slf_attn_stack.0.fc.linear.weight_orig", "D_s.slf_attn_stack.0.fc.linear.weight_u", "D_s.slf_attn_stack.0.fc.linear.weight_v", "D_s.fc_2.fc_layer.fc_layer.linear.weight_orig", "D_s.fc_2.fc_layer.fc_layer.linear.weight", "D_s.fc_2.fc_layer.fc_layer.linear.weight_u", "D_s.fc_2.fc_layer.fc_layer.linear.weight_orig", "D_s.fc_2.fc_layer.fc_layer.linear.weight_u", "D_s.fc_2.fc_layer.fc_layer.linear.weight_v", "D_s.V.fc_layer.fc_layer.linear.weight", "D_s.w_b_0.fc_layer.fc_layer.linear.weight", "D_s.w_b_0.fc_layer.fc_layer.linear.bias", "style_prototype.weight".
    	Unexpected key(s) in state_dict: "speaker_emb.weight".
    

    Can you help with this, seems like the pre-trained weights are old and do not conform to the current architecture.

    opened by sirius0503 1
  • time dimension doesn't match

    time dimension doesn't match

    ^MTraining: 0%| | 0/200000 [00:00<?, ?it/s] ^MEpoch 1: 0%| | 0/454 [00:00<?, ?it/s]^[[APrepare training ... Number of StyleSpeech Parameters: 28197333 Removing weight norm... Traceback (most recent call last): File "train.py", line 224, in main(args, configs) File "train.py", line 98, in main output = (None, None, model((batch[2:-5]))) File "/share/mini1/sw/std/python/anaconda3-2019.07/v3.7/envs/StyleSpeech/lib/python3.7/site-packages/torch/nn/modules/module.py", line 889, in _call_impl result = self.forward(*input, **kwargs) File "/share/mini1/sw/std/python/anaconda3-2019.07/v3.7/envs/StyleSpeech/lib/python3.7/site-packages/torch/nn/parallel/data_parallel.py", line 165, in forward return self.module(*inputs[0], **kwargs[0]) File "/share/mini1/sw/std/python/anaconda3-2019.07/v3.7/envs/StyleSpeech/lib/python3.7/site-packages/torch/nn/modules/module.py", line 889, in _call_impl result = self.forward(*input, **kwargs) File "/share/mini1/res/t/vc/studio/timap-en/libritts/StyleSpeech/model/StyleSpeech.py", line 144, in forward d_control, File "/share/mini1/res/t/vc/studio/timap-en/libritts/StyleSpeech/model/StyleSpeech.py", line 88, in G d_control, File "/share/mini1/sw/std/python/anaconda3-2019.07/v3.7/envs/StyleSpeech/lib/python3.7/site-packages/torch/nn/modules/module.py", line 889, in _call_impl result = self.forward(*input, **kwargs) File "/share/mini1/res/t/vc/studio/timap-en/libritts/StyleSpeech/model/modules.py", line 417, in forward x = x + pitch_embedding RuntimeError: The size of tensor a (132) must match the size of tensor b (130) at non-singleton dimension 1 ^MTraining: 0%| | 1/200000 [00:02<166:02:12, 2.99s/it]

    I think it might because of mfa I used. As mentioned in https://montreal-forced-aligner.readthedocs.io/en/latest/getting_started.html, I installed mfa through conda.

    Then I used mfa align raw_data/LibriTTS lexicon/librispeech-lexicon.txt english preprocessed_data/LibriTTS instead of the way you showed. But I can't find a way to run it as the way you showed, because I installed mfa through conda.

    opened by MingjieChen 24
Releases(v1.0.2)
Owner
Keon Lee
Expressive Speech Synthesis | Conversational AI | Open-domain Dialog | NLP | Generative Models | Empathic Computing | HCI
Keon Lee
Code Implementation of "Learning Span-Level Interactions for Aspect Sentiment Triplet Extraction".

Span-ASTE: Learning Span-Level Interactions for Aspect Sentiment Triplet Extraction ***** New March 31th, 2022: Scikit-Style API for Easy Usage *****

Chia Yew Ken 111 Dec 23, 2022
Fixes mojibake and other glitches in Unicode text, after the fact.

ftfy: fixes text for you print(fix_encoding("(ง'⌣')ง")) (ง'⌣')ง Full documentation: https://ftfy.readthedocs.org Testimonials “My life is li

Luminoso Technologies, Inc. 3.4k Dec 29, 2022
Biterm Topic Model (BTM): modeling topics in short texts

Biterm Topic Model Bitermplus implements Biterm topic model for short texts introduced by Xiaohui Yan, Jiafeng Guo, Yanyan Lan, and Xueqi Cheng. Actua

Maksim Terpilowski 49 Dec 30, 2022
Twitter-NLP-Analysis - Twitter Natural Language Processing Analysis

Twitter-NLP-Analysis Business Problem I got last @turk_politika 3000 tweets with

Çağrı Karadeniz 7 Mar 12, 2022
Command Line Text-To-Speech using Google TTS

cli-tts Thanks to gTTS by @pndurette! This is an interactive command line text-to-speech tool using Google TTS. Just type text and the voice will be p

ReekyStive 3 Nov 11, 2022
Gathers machine learning and Tensorflow deep learning models for NLP problems, 1.13 < Tensorflow < 2.0

NLP-Models-Tensorflow, Gathers machine learning and tensorflow deep learning models for NLP problems, code simplify inside Jupyter Notebooks 100%. Tab

HUSEIN ZOLKEPLI 1.7k Dec 30, 2022
Anuvada: Interpretable Models for NLP using PyTorch

Anuvada: Interpretable Models for NLP using PyTorch So, you want to know why your classifier arrived at a particular decision or why your flashy new d

EDGE 102 Oct 01, 2022
CDLA: A Chinese document layout analysis (CDLA) dataset

CDLA: A Chinese document layout analysis (CDLA) dataset 介绍 CDLA是一个中文文档版面分析数据集,面向中文文献类(论文)场景。包含以下10个label: 正文 标题 图片 图片标题 表格 表格标题 页眉 页脚 注释 公式 Text Title

buptlihang 84 Dec 28, 2022
Code for "Generative adversarial networks for reconstructing natural images from brain activity".

Reconstruct handwritten characters from brains using GANs Example code for the paper "Generative adversarial networks for reconstructing natural image

K. Seeliger 2 May 17, 2022
Deduplication is the task to combine different representations of the same real world entity.

Deduplication is the task to combine different representations of the same real world entity. This package implements deduplication using active learning. Active learning allows for rapid training wi

63 Nov 17, 2022
Easy Language Model Pretraining leveraging Huggingface's Transformers and Datasets

Easy Language Model Pretraining leveraging Huggingface's Transformers and Datasets What is LASSL • How to Use What is LASSL LASSL은 LAnguage Semi-Super

LASSL: LAnguage Self-Supervised Learning 116 Dec 27, 2022
p-tuning for few-shot NLU task

p-tuning_NLU Overview 这个小项目是受乐于分享的苏剑林大佬这篇p-tuning 文章启发,也实现了个使用P-tuning进行NLU分类的任务, 思路是一样的,prompt实现方式有不同,这里是将[unused*]的embeddings参数抽取出用于初始化prompt_embed后

3 Dec 29, 2022
结巴中文分词

jieba “结巴”中文分词:做最好的 Python 中文分词组件 "Jieba" (Chinese for "to stutter") Chinese text segmentation: built to be the best Python Chinese word segmentation

Sun Junyi 29.8k Jan 02, 2023
Code for text augmentation method leveraging large-scale language models

HyperMix Code for our paper GPT3Mix and conducting classification experiments using GPT-3 prompt-based data augmentation. Getting Started Installing P

NAVER AI 47 Dec 20, 2022
Stack based programming language that compiles to x86_64 assembly or can alternatively be interpreted in Python

lang lang is a simple stack based programming language written in Python. It can

Christoffer Aakre 1 May 30, 2022
Code for PED: DETR For (Crowd) Pedestrian Detection

Code for PED: DETR For (Crowd) Pedestrian Detection

36 Sep 13, 2022
wxPython app for converting encodings, modifying and fixing SRT files

Subtitle Converter Program za obradu srt i txt fajlova. Requirements: Python version 3.8 wxPython version 4.1.0 or newer Libraries: srt, PyDispatcher

4 Nov 25, 2022
NLP Core Library and Model Zoo based on PaddlePaddle 2.0

PaddleNLP 2.0拥有丰富的模型库、简洁易用的API与高性能的分布式训练的能力,旨在为飞桨开发者提升文本建模效率,并提供基于PaddlePaddle 2.0的NLP领域最佳实践。

6.9k Jan 01, 2023
Ptorch NLU, a Chinese text classification and sequence annotation toolkit, supports multi class and multi label classification tasks of Chinese long text and short text, and supports sequence annotation tasks such as Chinese named entity recognition, part of speech tagging and word segmentation.

Pytorch-NLU,一个中文文本分类、序列标注工具包,支持中文长文本、短文本的多类、多标签分类任务,支持中文命名实体识别、词性标注、分词等序列标注任务。 Ptorch NLU, a Chinese text classification and sequence annotation toolkit, supports multi class and multi label classifi

186 Dec 24, 2022
Pipeline for fast building text classification TF-IDF + LogReg baselines.

Text Classification Baseline Pipeline for fast building text classification TF-IDF + LogReg baselines. Usage Instead of writing custom code for specif

Dani El-Ayyass 57 Dec 07, 2022