The starter repository for submissions to the GeneDisco challenge for optimized experimental design in genetic perturbation experiments

Overview

GeneDisco ICLR-22 Challenge Starter Repository

Python version Library version

The starter repository for submissions to the GeneDisco challenge for optimized experimental design in genetic perturbation experiments.

GeneDisco (to be published at ICLR-22) is a benchmark suite for evaluating active learning algorithms for experimental design in drug discovery. GeneDisco contains a curated set of multiple publicly available experimental data sets as well as open-source implementations of state-of-the-art active learning policies for experimental design and exploration.

Install

pip install -r requirements.txt

Use

Setup

  • Create a cache directory. This will hold any preprocessed and downloaded datasets for faster future invocation.
    • $ mkdir /path/to/genedisco_cache
    • Replace the above with your desired cache directory location.
  • Create an output directory. This will hold all program outputs and results.
    • $ mkdir /path/to/genedisco_output
    • Replace the above with your desired output directory location.

How to Run the Full Benchmark Suite?

Experiments (all baselines, acquisition functions, input and target datasets, multiple seeds) included in GeneDisco can be executed sequentially for e.g. acquired batch size 64, 8 cycles and a bayesian_mlp model using:

run_experiments \
  --cache_directory=/path/to/genedisco_cache  \
  --output_directory=/path/to/genedisco_output  \
  --acquisition_batch_size=64  \
  --num_active_learning_cycles=8  \
  --max_num_jobs=1

Results are written to the folder at /path/to/genedisco_cache, and processed datasets will be cached at /path/to/genedisco_cache (please replace both with your desired paths) for faster startup in future invocations.

Note that due to the number of experiments being run by the above command, we recommend execution on a compute cluster.
The GeneDisco codebase also supports execution on slurm compute clusters (the slurm command must be available on the executing node) using the following command and using dependencies in a Python virtualenv available at /path/to/your/virtualenv (please replace with your own virtualenv path):

run_experiments \
  --cache_directory=/path/to/genedisco_cache  \
  --output_directory=/path/to/genedisco_output  \
  --acquisition_batch_size=64  \
  --num_active_learning_cycles=8  \
  --schedule_on_slurm \
  --schedule_children_on_slurm \
  --remote_execution_virtualenv_path=/path/to/your/virtualenv

Other scheduling systems are currently not supported by default.

How to Run A Single Isolated Experiment (One Learning Cycle)?

To run one active learning loop cycle, for example, with the "topuncertain" acquisition function, the "achilles" feature set and the "schmidt_2021_ifng" task, execute the following command:

active_learning_loop  \
    --cache_directory=/path/to/genedisco/genedisco_cache \
    --output_directory=/path/to/genedisco/genedisco_output \
    --model_name="bayesian_mlp" \
    --acquisition_function_name="topuncertain" \
    --acquisition_batch_size=64 \
    --num_active_learning_cycles=8 \
    --feature_set_name="achilles" \
    --dataset_name="schmidt_2021_ifng" 

How to Evaluate a Custom Acquisition Function?

To run a custom acquisition function, set --acquisition_function_name="custom" and --acquisition_function_path to the file path that contains your custom acquisition function (e.g. main.py in this repo).

active_learning_loop  \
    --cache_directory=/path/to/genedisco/genedisco_cache \
    --output_directory=/path/to/genedisco/genedisco_output \
    --model_name="bayesian_mlp" \
    --acquisition_function_name="custom" \
    --acquisition_function_path=/path/to/src/main.py \
    --acquisition_batch_size=64 \
    --num_active_learning_cycles=8 \
    --feature_set_name="achilles" \
    --dataset_name="schmidt_2021_ifng" 

...where "/path/to/custom_acquisition_function.py" contains code for your custom acquisition function corresponding to the BaseBatchAcquisitionFunction interface, e.g.:

import numpy as np
from typing import AnyStr, List
from slingpy import AbstractDataSource
from slingpy.models.abstract_base_model import AbstractBaseModel
from genedisco.active_learning_methods.acquisition_functions.base_acquisition_function import \
    BaseBatchAcquisitionFunction

class RandomBatchAcquisitionFunction(BaseBatchAcquisitionFunction):
    def __call__(self,
                 dataset_x: AbstractDataSource,
                 batch_size: int,
                 available_indices: List[AnyStr], 
                 last_selected_indices: List[AnyStr] = None, 
                 model: AbstractBaseModel = None,
                 temperature: float = 0.9,
                 ) -> List:
        selected = np.random.choice(available_indices, size=batch_size, replace=False)
        return selected

Note that the last class implementing BaseBatchAcquisitionFunction is loaded by GeneDisco if there are multiple valid acquisition functions present in the loaded file.

Submission instructions

For submission, you will need two things:

Please note that all your submitted code must either be loaded via a dependency in requirements.txt or be present in the src/ directory in this starter repository for the submission to succeed.

Once you have set up your submission environment, you will need to create a lightweight container image that contains your acquisition function.

Submission steps

  • Navigate to the directory to which you have cloned this repo to.
    • $ cd /path/to/genedisco-starter
  • Ensure you have ONE acquisition function (inheriting from BaseBatchAcquisitionFunction) in main.py
    • This is your pre-defined program entry point.
  • Build your container image
    • $ docker build -t submission:latest .
  • Save your image name to a shell variable
    • $ IMAGE="submission:latest"
  • Use the EvalAI-CLI command to submit your image
    • Run the following command to submit your container image:
      • $ evalai push $IMAGE --phase gsk-genedisco-challenge-1528
      • Please note that you have a maximum number of submissions that any submission will be counted against.

That’s it! Our pipeline will take your image and test your function.

If you have any questions or concerns, please reach out to us at [email protected]

Citation

Please consider citing, if you reference or use our methodology, code or results in your work:

@inproceedings{mehrjou2022genedisco,
    title={{GeneDisco: A Benchmark for Experimental Design in Drug Discovery}},
    author={Mehrjou, Arash and Soleymani, Ashkan and Jesson, Andrew and Notin, Pascal and Gal, Yarin and Bauer, Stefan and Schwab, Patrick},
    booktitle={{International Conference on Learning Representations (ICLR)}},
    year={2022}
}

License

License

Authors

Arash Mehrjou, GlaxoSmithKline plc
Jacob A. Sackett-Sanders, GlaxoSmithKline plc
Patrick Schwab, GlaxoSmithKline plc

Acknowledgements

PS, JSS and AM are employees and shareholders of GlaxoSmithKline plc.

This is a FastAPI, React, MongoDB stack Boilerplate. It's as glorious as a highland coo.

Coo - F.A.R.M stack BoilerPlate F.A.R.M - FastAPI, React, MongoDB This boilerplate utilizes FastAPI to build a REST API, MongoDB for data storage, and

Peter Waters 2 Feb 06, 2022
Boilerplate code for a Python Flask API

MrMat :: Python :: API :: Flask Boilerplate code for a Python Flask API This variant of a Python Flask API is code-first and using native Flask Featur

0 Dec 26, 2021
A boilerplate Django project for quickly getting started.

The Definitive Django Learning Platform. Django Project Boilerplate This repository is a boilerplate Django project for quickly getting started. Getti

Le Huynh Long 1 Nov 01, 2021
Template repository to build PyTorch projects from source on any version of PyTorch/CUDA/cuDNN.

Template repository to build PyTorch projects from source on any version of PyTorch/CUDA/cuDNN.

Joonhyung Lee/이준형 651 Dec 12, 2022
simple flask starter app utilizing docker

Simple flask starter app utilizing docker to showcase seasonal anime using jikanpy (myanimelist unofficial api).

Kennedy Ngugi Mwaura 5 Dec 15, 2021
A template repository implementing HTML5 Boilerplate 8.0 in Sanic using the Domonic framework.

sanic-domonic-h5bp A template repository implementing HTML5 Boilerplate 8.0 in Sanic using the Domonic framework. If you need frontend interactivity,

PyXY 3 Dec 12, 2022
King is a simple boilerplate from a bigger Discord Bot project created for my Discord Server.

King A simple Discord bot boilerplate. King is a simple boilerplate from a bigger Discord Bot project created for my Discord Server. I intend to showc

Xminent 0 Aug 21, 2021
Code Kata Python Template

Code Kata Python Template This is the code kata template for python created by Aula de Software Libre de la Universidad de Córdoba Step 1. Use this re

Sergio Gómez 2 Nov 30, 2021
The starter repository for submissions to the GeneDisco challenge for optimized experimental design in genetic perturbation experiments

GeneDisco ICLR-22 Challenge Starter Repository The starter repository for submissions to the GeneDisco challenge for optimized experimental design in

22 Dec 06, 2022
NHS Theme for Streamlit applications

NHS Streamlit App Template Deployment (local) The tool has been built using Stre

nhs.pycom 3 Nov 07, 2022
The starter for the Flask React project

Flask React Project This is the starter for the Flask React project. Getting started Clone this repository (only this branch) git clone https://github

Parker Bolick 2 May 14, 2022
A Django starter template with a sound foundation.

SOS Django Template SOS Django Tempalate is a Django starter template that has opinionated and good solutions while starting your new Django project.

Eray Erdin 19 Oct 30, 2022
A python starter package to be used as a template for creating your own python packages.

Python Starter Package This is a basic python starter package to be used as a template for creating your own python packages. Github repo: https://git

Mystic 1 Apr 04, 2022
PyPC is a very simple tool that creates Python projects from templates.

PyPC (Python Project Creator) PyPC is a very simple tool that creates Python projects from templates. In 0.1v#alpha, custom template creation will be

art3m1s 1 Nov 26, 2021
A command-line utility that creates projects from cookiecutters (project templates), e.g. Python package projects, VueJS projects.

Cookiecutter A command-line utility that creates projects from cookiecutters (project templates), e.g. creating a Python package project from a Python

18.7k Jan 08, 2023
A full stack boilerplate for FastAPI

A full stack boilerplate for FastAPI

Tyler M. Kontra 94 Dec 13, 2022
A cookiecutter template for python scripts

cookiecutter-py-script A cookiecutter template for python scripts Prerequisites Git Usage pip install cookiecutter

Zeheng Li 1 Dec 14, 2022
Django sample app with users including social auth via Django-AllAuth

demo-allauth-bootstrap Simple, out-of-the-box Django all-auth demo app A "brochure" or visitor (no login required) area A members-only (login required

Andrew E 215 Dec 20, 2022
Template to quickly start your playwright-python project

Playwright-python template 🍪 Template to quickly start your playwright-python project Getting started • Demo • Configuration Getting started Clone th

Constantin 1 Dec 13, 2021
Backend Boilerplate using Django,celery,Redis

Backend Boilerplate using Django,celery,Redis

Daniel Mawioo 2 Sep 14, 2022