The Surprising Effectiveness of Visual Odometry Techniques for Embodied PointGoal Navigation

Overview

License

PointNav-VO

The Surprising Effectiveness of Visual Odometry Techniques for Embodied PointGoal Navigation

Project Page | Paper

Table of Contents

Setup

Install Dependencies

conda env create -f environment.yml

Install Habitat

The repo is tested under the following commits of habitat-lab and habitat-sim.

habitat-lab == d0db1b55be57abbacc5563dca2ca14654c545552
habitat-sim == 020041d75eaf3c70378a9ed0774b5c67b9d3ce99

Note, to align with Habitat Challenge 2020 settings (see Step 36 in the Dockerfile), when installing habitat-sim, we compiled without CUDA support as

python setup.py install --headless

There was a discrepancy between noises models in CPU and CPU versions which has now been fixed, see this issue. Therefore, to reproduce the results in the paper with our pre-trained weights, you need to use noises model of CPU-version.

Download Data

We need two datasets to enable running of this repo:

  1. Gibson scene dataset
  2. PointGoal Navigation splits, we need pointnav_gibson_v2.zip.

Please follow Habitat's instruction to download them. We assume all data is put under ./dataset with structure:

.
+-- dataset
|  +-- Gibson
|  |  +-- gibson
|  |  |  +-- Adrian.glb
|  |  |  +-- Adrian.navmesh
|  |  |  ...
|  +-- habitat_datasets
|  |  +-- pointnav
|  |  |  +-- gibson
|  |  |  |  +-- v2
|  |  |  |  |  +-- train
|  |  |  |  |  +-- val
|  |  |  |  |  +-- valmini

Reproduce

Download pretrained checkpoints of RL navigation policy and VO from this link. Put them under pretrained_ckpts with the following structure:

.
+-- pretrained_ckpts
|  +-- rl
|  |  +-- no_tune
|  |  |  +-- rl_no_tune.pth
|  |  +-- tune_vo
|  |  |  +-- rl_tune_vo.pth
|  +-- vo
|  |  +-- act_forward.pth
|  |  +-- act_left_right_inv_joint.pth

Run the following command to reproduce navigation results. On Intel(R) Xeon(R) CPU E5-2683 v4 @ 2.10GHz and a Nvidia GeForce GTX 1080 Ti, it takes around 4.5 hours to complete evaluation on all 994 episodes with navigation policy tuned with VO.

cd /path/to/this/repo
export POINTNAV_VO_ROOT=$PWD

export NUMBA_NUM_THREADS=1 && \
export NUMBA_THREADING_LAYER=workqueue && \
conda activate pointnav-vo && \
python ${POINTNAV_VO_ROOT}/launch.py \
--repo-path ${POINTNAV_VO_ROOT} \
--n_gpus 1 \
--task-type rl \
--noise 1 \
--run-type eval \
--addr 127.0.1.1 \
--port 8338

Use VO as a Drop-in Module

We provide a class BaseRLTrainerWithVO that contains all necessary functions to compute odometry in base_trainer_with_vo.py. Specifically, you can use _compute_local_delta_states_from_vo to compute odometry based on adjacent observations. The code sturcture will be something like:

local_delta_states = _compute_local_delta_states_from_vo(prev_obs, cur_obs, action)
cur_goal = compute_goal_pos(prev_goal, local_delta_states)

To get more sense about how to use this function, please refer to challenge2020_agent.py, which is the agent we used in HabitatChallenge 2020.

Train Your Own VO

See details in TRAIN.md

Citation

Please cite the following papers if you found our model useful. Thanks!

Xiaoming Zhao, Harsh Agrawal, Dhruv Batra, and Alexander Schwing. The Surprising Effectiveness of Visual Odometry Techniques for Embodied PointGoal Navigation. ICCV 2021.

@inproceedings{ZhaoICCV2021,
  title={{The Surprising Effectiveness of Visual Odometry Techniques for Embodied PointGoal Navigation}},
  author={Xiaoming Zhao and Harsh Agrawal and Dhruv Batra and Alexander Schwing},
  booktitle={Proc. ICCV},
  year={2021},
}
Owner
Xiaoming Zhao
PhD Student @IllinoisCS
Xiaoming Zhao
(Personalized) Page-Rank computation using PyTorch

torch-ppr This package allows calculating page-rank and personalized page-rank via power iteration with PyTorch, which also supports calculation on GP

Max Berrendorf 69 Dec 03, 2022
Implementation of Neural Distance Embeddings for Biological Sequences (NeuroSEED) in PyTorch

Neural Distance Embeddings for Biological Sequences Official implementation of Neural Distance Embeddings for Biological Sequences (NeuroSEED) in PyTo

Gabriele Corso 56 Dec 23, 2022
[CVPR'21 Oral] Seeing Out of tHe bOx: End-to-End Pre-training for Vision-Language Representation Learning

Seeing Out of tHe bOx: End-to-End Pre-training for Vision-Language Representation Learning [CVPR'21, Oral] By Zhicheng Huang*, Zhaoyang Zeng*, Yupan H

Multimedia Research 196 Dec 13, 2022
Unoffical reMarkable AddOn for Firefox.

reMarkable for Firefox (Download) This repo converts the offical reMarkable Chrome Extension into a Firefox AddOn published here under the name "Unoff

Jelle Schutter 45 Nov 28, 2022
An original implementation of "MetaICL Learning to Learn In Context" by Sewon Min, Mike Lewis, Luke Zettlemoyer and Hannaneh Hajishirzi

MetaICL: Learning to Learn In Context This includes an original implementation of "MetaICL: Learning to Learn In Context" by Sewon Min, Mike Lewis, Lu

Meta Research 141 Jan 07, 2023
Tensorflow implementation of Character-Aware Neural Language Models.

Character-Aware Neural Language Models Tensorflow implementation of Character-Aware Neural Language Models. The original code of author can be found h

Taehoon Kim 751 Dec 26, 2022
A public available dataset for road boundary detection in aerial images

Topo-boundary This is the official github repo of paper Topo-boundary: A Benchmark Dataset on Topological Road-boundary Detection Using Aerial Images

Zhenhua Xu 79 Jan 04, 2023
This repo implements several applications of the proposed generalized Bures-Wasserstein (GBW) geometry on symmetric positive definite matrices.

GBW This repo implements several applications of the proposed generalized Bures-Wasserstein (GBW) geometry on symmetric positive definite matrices. Ap

Andi Han 0 Oct 22, 2021
Code for Transformers Solve Limited Receptive Field for Monocular Depth Prediction

Official PyTorch code for Transformers Solve Limited Receptive Field for Monocular Depth Prediction. Guanglei Yang, Hao Tang, Mingli Ding, Nicu Sebe,

stanley 152 Dec 16, 2022
The code is an implementation of Feedback Convolutional Neural Network for Visual Localization and Segmentation.

Feedback Convolutional Neural Network for Visual Localization and Segmentation The code is an implementation of Feedback Convolutional Neural Network

19 Dec 04, 2022
This is a template for the Non-autoregressive Deep Learning-Based TTS model (in PyTorch).

Non-autoregressive Deep Learning-Based TTS Template This is a template for the Non-autoregressive TTS model. It contains Data Preprocessing Pipeline D

Keon Lee 13 Dec 05, 2022
tensorrt int8 量化yolov5 4.0 onnx模型

onnx模型转换为 int8 tensorrt引擎

123 Dec 28, 2022
Repository for "Improving evidential deep learning via multi-task learning," published in AAAI2022

Improving evidential deep learning via multi task learning It is a repository of AAAI2022 paper, “Improving evidential deep learning via multi-task le

deargen 11 Nov 19, 2022
YouRefIt: Embodied Reference Understanding with Language and Gesture

YouRefIt: Embodied Reference Understanding with Language and Gesture YouRefIt: Embodied Reference Understanding with Language and Gesture by Yixin Che

16 Jul 11, 2022
Translate darknet to tensorflow. Load trained weights, retrain/fine-tune using tensorflow, export constant graph def to mobile devices

Intro Real-time object detection and classification. Paper: version 1, version 2. Read more about YOLO (in darknet) and download weight files here. In

Trieu 6.1k Dec 30, 2022
Official repository for the ICLR 2021 paper Evaluating the Disentanglement of Deep Generative Models with Manifold Topology

Official repository for the ICLR 2021 paper Evaluating the Disentanglement of Deep Generative Models with Manifold Topology Sharon Zhou, Eric Zelikman

Stanford Machine Learning Group 34 Nov 16, 2022
This repository consists of Blender python scripts and corresponding assets to generate variants of the CANDLE dataset

candle-simulator This repository consists of Blender python scripts and corresponding assets to generate variants of the IITH-CANDLE dataset. The rend

1 Dec 15, 2021
Distributing reference energies for SMIRNOFF implementations

Warning: This code is currently experimental and under active development. Is it not yet suitable for distribution or use as reference implementation.

Open Force Field Initiative 1 Dec 07, 2021
Distinguishing Commercial from Editorial Content in News

Distinguishing Commercial from Editorial Content in News In this repository you can find the following: An anonymized version of the data used for my

Timo Kats 3 Sep 26, 2022
[ACM MM 2021] TSA-Net: Tube Self-Attention Network for Action Quality Assessment

Tube Self-Attention Network (TSA-Net) This repository contains the PyTorch implementation for paper TSA-Net: Tube Self-Attention Network for Action Qu

ShunliWang 18 Dec 23, 2022