GPT-Code-Clippy (GPT-CC) is an open source version of GitHub Copilot

Overview

GPT-Code-Clippy (GPT-CC)

Please refer to our new GitHub Wiki which documents our efforts in detail in creating the open source version of GitHub Copilot



Courtesy of the awesome Aimee Trevett!

Introduction

GPT-Code-Clippy (GPT-CC) is an open source version of GitHub Copilot, a language model -- based on GPT-3, called GPT-Codex -- that is fine-tuned on publicly available code from GitHub.

Datasets

The dataset used to train GPT-CC is obtained from SEART GitHub Search using the following criteria:

  • >10 GitHub stars
  • >2 commits
  • Must have a licence
  • Exclude forks
  • Size < 70708 bytes

These repositories are then combined with all of the GitHub repositories contain in The Pile.

The repositories are then filtered for duplicate files. Filtering is performed by regexing each file in each repository to obtain a list of "variables" (the tokens which only contain alphanumeric characters) and then filtering out any files which contain the same sequence of "variables. The deduplication script is available here.

The final dataset is available here. The dataset without the duplicates filtered out is also available here.

The datasheet discussing in more detail the construction, usage, and limitation of the dataset can be found here. We hope to get it officially into Huggingface's datasets library soon!

Models

The GPT-CC models are fine-tuned versions of GPT-2 and GPT-Neo.

The available models can be found here

The ones that perform relatively well (None improve on the standard GPT-Neo 125M model except for APPs specific models and only for the APPs task):

TODO: which is the recommended model?

Training

Training is done using the training scripts available here.

For fine-tuning GPTNeo-125M on CodeClippy dataset we used AdamW optimizer (beta1=0.9, beta2=0.95) with GPT3-like learning rate schedule (4k warmup steps from 0 to 5e-5 followed by 50k cosine decay steps to 5e-6), weight decay 0.1 and batch size 1024, sequence length 2048. The choice of relatively large batch size and low LR with long warmup are made to avoid agressive updates and preserve the knowledge contained in pretrained GPTNeo weights.

For fine-tuning GPTNe0-125M on APPS dataset we used AdamW optimizer (beta1=0.9, beta2=0.98) with linear learning rate schedule (800 warmup steps from 0 to peak LR followed by linear decay to 0, a range of value for peak LR was [1e-5; 1e-4]), weight decay 0.1 and batch size 256, sequence length 1024. We trained model for 5 epochs selecting best checkpoint judging by validation loss. The language modelling objective for APPS dataset is modified to backpropagate loss only for the tokens corresponding to code solution (refer to Hendrycks et al for more details).

For fine-tuning GPTNe0-1.3B on APPS dataset we used Adafactor optimizer with linear learning rate schedule (5k warmup steps from 0 to 2e-5 followed by linear decay to 0), weight decay 0.1 and batch size 24, sequence length 1024. The choice of hyperparameters for 1.3B model is in part determined by hardware limitations. We trained model for 5 epochs selecting best checkpoint judging by validation loss.

TODO: which is the recommended way to train GPT-CC?

Evaluation

The models are also evaluated on the APPS and HumanEval datasets.

Human Eval Results

Model [email protected] [email protected] [email protected] [email protected]
EleutherAI/gpt-neo 0.12% 0.24% 0.61% 1.22%
gpt-neo-125M-apps 0.06% 0.12% 0.30% 0.61%
dedup-filtered-no-resize-2048bs 0.00% 0.00% 0.00% 0.00%
1024-filtered 0.00% 0.00% 0.00% 0.00%
dedup-2048 0.00% 0.00% 0.00% 0.00%

APPS Eval Results

Coming soon...

Demo

A Visual Studio Code which uses the HuggingFace Inference API is available and can be found here.

We also have Huggingface's Space demo where you can specify and problem in the format of a programming competition question.

TODO: more information about this when complete.

Further Reading

For more information about GPT-CC, GitHub Copilot, etc, see:

TODO: add more further reading.

Acknowledgements

Special thanks to our contributors!!

SLIDE : In Defense of Smart Algorithms over Hardware Acceleration for Large-Scale Deep Learning Systems

The SLIDE package contains the source code for reproducing the main experiments in this paper. Dataset The Datasets can be downloaded in Amazon-

Intel Labs 72 Dec 16, 2022
Supplementary materials for ISMIR 2021 LBD paper "Evaluation of Latent Space Disentanglement in the Presence of Interdependent Attributes"

Evaluation of Latent Space Disentanglement in the Presence of Interdependent Attributes Supplementary materials for ISMIR 2021 LBD submission: K. N. W

Karn Watcharasupat 2 Oct 25, 2021
Realtime segmentation with ENet, the fast and accurate segmentation net.

Enet This is a realtime segmentation net with almost 22 fps on GTX1080 ti, and the model size is very small with only 28M. This repo contains the infe

JinTian 14 Aug 30, 2022
TensorFlow-LiveLessons - "Deep Learning with TensorFlow" LiveLessons

TensorFlow-LiveLessons Note that the second edition of this video series is now available here. The second edition contains all of the content from th

Deep Learning Study Group 830 Jan 03, 2023
This reporistory contains the test-dev data of the paper "xGQA: Cross-lingual Visual Question Answering".

This reporistory contains the test-dev data of the paper "xGQA: Cross-lingual Visual Question Answering".

AdapterHub 18 Dec 09, 2022
GBIM(Gesture-Based Interaction map)

手势交互地图 GBIM(Gesture-Based Interaction map),基于视觉深度神经网络的交互地图,通过电脑摄像头观察使用者的手势变化,进而控制地图进行简单的交互。网络使用PaddleX提供的轻量级模型PPYOLO Tiny以及MobileNet V3 small,使得整个模型大小约10MB左右,即使在CPU下也能快速定位和识别手势。

8 Feb 10, 2022
Data, notebooks, and articles associated with the RSNA AI Deep Learning Lab at RSNA 2021

RSNA AI Deep Learning Lab 2021 Intro Welcome Deep Learners! This document provides all the information you need to participate in the RSNA AI Deep Lea

RSNA 65 Dec 16, 2022
Codes for realizing theories learned from Data Mining, Machine Learning, Deep Learning without using the present Python packages.

Codes-for-Algorithms Codes for realizing theories learned from Data Mining, Machine Learning, Deep Learning without using the present Python packages.

Tracy (Shengmin) Tao 1 Apr 12, 2022
Code for A Volumetric Transformer for Accurate 3D Tumor Segmentation

VT-UNet This repo contains the supported pytorch code and configuration files to reproduce 3D medical image segmentaion results of VT-UNet. Environmen

Himashi Amanda Peiris 114 Dec 20, 2022
Named Entity Recognition with Small Strongly Labeled and Large Weakly Labeled Data

Named Entity Recognition with Small Strongly Labeled and Large Weakly Labeled Data arXiv This is the code base for weakly supervised NER. We provide a

Amazon 92 Jan 04, 2023
My implementation of transformers related papers for computer vision in pytorch

vision_transformers This is my personnal repo to implement new transofrmers based and other computer vision DL models I am currenlty working without a

samsja 1 Nov 10, 2021
Code base for "On-the-Fly Test-time Adaptation for Medical Image Segmentation"

On-the-Fly Adaptation Official Pytorch Code base for On-the-Fly Test-time Adaptation for Medical Image Segmentation Paper Introduction One major probl

Jeya Maria Jose 17 Nov 10, 2022
A Peer-to-peer Platform for Secure, Privacy-preserving, Decentralized Data Science

PyGrid is a peer-to-peer network of data owners and data scientists who can collectively train AI models using PySyft. PyGrid is also the central serv

OpenMined 615 Jan 03, 2023
Practical tutorials and labs for TensorFlow used by Nvidia, FFN, CNN, RNN, Kaggle, AE

TensorFlow Tutorial - used by Nvidia Learn TensorFlow from scratch by examples and visualizations with interactive jupyter notebooks. Learn to compete

Alexander R Johansen 1.9k Dec 19, 2022
An implementation for the loss function proposed in Decoupled Contrastive Loss paper.

Decoupled-Contrastive-Learning This repository is an implementation for the loss function proposed in Decoupled Contrastive Loss paper. Requirements P

Ramin Nakhli 71 Dec 04, 2022
Analysis code and Latex source of the manuscript describing the conditional permutation test of confounding bias in predictive modelling.

Git repositoty of the manuscript entitled Statistical quantification of confounding bias in predictive modelling by Tamas Spisak The manuscript descri

PNI - Predictive Neuroimaging Lab, University Hospital Essen, Germany 0 Nov 22, 2021
A simple log parser and summariser for IIS web server logs

IISLogFileParser A basic parser tool for IIS Logs which summarises findings from the log file. Inspired by the Gist https://gist.github.com/wh13371/e7

2 Mar 26, 2022
A Small and Easy approach to the BraTS2020 dataset (2D Segmentation)

BraTS2020 A Light & Scalable Solution to BraTS2020 | Medical Brain Tumor Segmentation (2D Segmentation) Developed the segmentation models for segregat

Gunjan Haldar 0 Jan 19, 2022
Official implementation of cosformer-attention in cosFormer: Rethinking Softmax in Attention

cosFormer Official implementation of cosformer-attention in cosFormer: Rethinking Softmax in Attention Update log 2022/2/28 Add core code License This

120 Dec 15, 2022
Implementation of Ag-Grid component for Streamlit

streamlit-aggrid AgGrid is an awsome grid for web frontend. More information in https://www.ag-grid.com/. Consider purchasing a license from Ag-Grid i

Pablo Fonseca 556 Dec 31, 2022